
Noname manuscript No.
(will be inserted by the editor)

Domain-General Tutor Authoring with Apprentice
Learner Models

Christopher J. MacLellan ·
Kenneth R. Koedinger

Received: date / Accepted: date

Abstract Intelligent tutoring systems are effective for improving students’
learning outcomes (Bowen et al., 2013; Koedinger and Anderson, 1997; Pane
et al., 2013). However, constructing tutoring systems that are pedagogically
effective has been widely recognized as a challenging problem (Murray, 1999,
2003). In this paper, we explore the use of computational models of apprentice
learning, or computer models that learn interactively from examples and feed-
back, for authoring expert-models via demonstrations and feedback (Matsuda
et al., 2014) across a wide range of domains.

To support these investigations, we present the Apprentice Learner Archi-
tecture, which posits the types of knowledge, performance, and learning com-
ponents needed for apprentice learning. We use this architecture to create two
models: the Decision Tree model, which non-incrementally learns skills, and
the Trestle model, which instead learns incrementally. Both models draw on
the same small set of prior knowledge (six operators and three types of rela-

This work was supported in part by a Graduate Training Grant awarded to Carnegie Mel-
lon University by the Department of Education (#R305B090023 and #R305A090519), by
the Pittsburgh Science of Learning Center, which is funded by the NSF (#SBE-0836012),
two National Science Foundation Awards (#DRL-0910176 and #DRL-1252440), and by a
DARPA award (#HR00111990055). The views, opinions and/or findings expressed are those
of the author and should not be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government. We would also like to thank Carnegie
Learning, Inc. for providing the Cognitive Tutor data that supported this work.

Christopher J. MacLellan
Information Science Department
Drexel University
Philadelphia, PA 19104
E-mail: christopher.maclellan@drexel.edu

Kenneth R. Koedinger
Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15214
E-mail: koedinger@cmu.edu

2 Christopher J. MacLellan, Kenneth R. Koedinger

tional knowledge) to support expert model authoring. Despite their limited
prior knowledge, we demonstrate their use for efficiently authoring a novel
experimental design tutor and show that they are capable of learning an ex-
pert model for seven additional tutoring systems that teach a wide range of
knowledge types (associations, categories, and skills) across multiple domains
(language, math, engineering, and science).

This work shows that apprentice learner models are efficient for authoring
tutors that would be difficult to build with existing non-programmer author-
ing approaches (e.g., experimental design or stoichiometry tutors). Further,
we show that these models can be applied to author tutors across eight tutor
domains even though they only have a small, fixed set of prior knowledge. This
work lays the foundation for new interactive machine-learning based author-
ing paradigms that empower teachers and other non-programmers to build
pedagogically effective educational technologies at scale.

Keywords Authoring Tools, Intelligent Tutoring Systems, Interactive
Machine Learning, Simulated Agents

1 Introduction

Intelligent tutoring systems have been shown to improve student learning
across multiple domains (Beal et al., 2007; Graesser et al., 2001; Koedinger
and Anderson, 1997; Mitrovic et al., 2002; Ritter et al., 2007; VanLehn, 2011),
but designing and building tutoring systems that are pedagogically effective
is difficult and expensive (Murray, 2005). In an ideal world, tutor design is
an iterative process that consists of multiple phases of design, building, and
testing. However, each phase of this design process requires time, expertise,
and resources to execute properly, which, in general, makes tutor development
a cost prohibitive endeavor (Murray, 1999). As a result, many researchers
have created tools to support the tutor development process (Aleven et al.,
2006; Murray, 1999, 2003; Sottilare and Holden, 2013). While existing tutor
authoring tools have been shown to reduce the expertise requirements and
time needed to build a tutor (e.g., Example-Tracing has been shown to reduce
authoring time by as much as four times, Aleven et al., 2009), they still strug-
gle to support non-programmers trying to build tutors for complex domains
(MacLellan et al., 2015). Thus, how technology can support tutor authoring
remains an open research question.

To develop technology to support tutor authoring, we first looked at cur-
rent tutor development practices. Instructional designers begin the process
in the design phase, where they must address two high-level questions: what
is the material to be taught and how should it be presented? In theory, de-
signers should work with subject-matter experts to identify relevant domain
content (e.g., using Cognitive Task Analysis techniques, Clark et al., 2008) and
draw on prior science of learning findings (e.g., from the Knowledge-Learning-
Instruction framework, Koedinger et al., 2012) to answer questions about in-
struction. In practice, however, domain experts and students are not always

Domain-General Tutor Authoring with Apprentice Learner Models 3

accessible for task analyses and existing learning theories are often difficult to
translate into the specific contexts faced when designing a tutor (Koedinger
et al., 2013)—particularly in situations where multiple instructional factors
interact. In these situations, designers must rely on their prior experiences
and self-reflections to guide design decisions.

However, there are pitfalls to using intuition to guide tutor design. For
example, Clark et al. (2008) argue that much of an expert’s knowledge is
tacit—as people gain expertise their performance improves, but it becomes
harder for them to verbally articulate the intermediate skills they use. Thus,
domain experts (and instructional designers) often have “expert blind spots”
regarding the intermediate skills novices need in order to reach proficiency in
a particular domain (Nathan et al., 2001). Additionally, the instruction that
designers received when they were learning may not be the best model for
good instruction, and their learning experiences may not be representative of
others. This insight is aptly captured in the instructional design mantra, “the
learner is not like me”.1 However, even if instructional designers remember
this mantra, they still face situations where they have no choice but to rely on
their own experiences to guide design.

Given these current practices, what is needed is a tool that leverages learn-
ing science theory to guide the initial design phase and to support designers
in the build process. In this paper, we explore the use of computational mod-
els of human learning from examples and feedback, what we call apprentice
learner models,2 for these purposes (VanLehn et al., 1994). These models en-
code problem-solving and learning theory into self-contained computer pro-
grams that can learn like humans do.

To support the initial design and build phases, apprentice learner models
facilitate the expert model authoring process. Similar to human apprentices
(Collins et al., 1987), domain experts train models by providing them with ex-
amples and feedback. These models translate this instruction into expert mod-
els that can power tutoring systems or, more generally, model expert behavior.
Thus, they provide a means for non-programmers to build expert models. Prior
work suggests that these models can enable efficient expert-model authoring
(Jarvis et al., 2004; MacLellan et al., 2015; Matsuda et al., 2014), which should,
in theory, make it possible for non-programmers to author more complex tutor-
ing systems than would be practical with other non-programmer approaches.
Also, unlike authoring tools that provide support for designers to construct
expert models directly, such as Example-Tracing (Aleven et al., 2009) or the
Generalized Intelligent Framework for Tutoring (Sottilare and Holden, 2013),
apprentice learner models act as a check against expert blind spots because
they start without any of the target skills and they struggle to acquire them if
key intermediate steps are missing during training. In support of this idea, Li

1 This is Ken Koedinger’s variation of Bonnie John’s user-centered design mantra “the user is not
like me.”

2 We use this term slightly differently than prior work on learning apprentices (Dent et al., 1992)
or apprenticeship learning (Abbeel and Ng, 2004), which typically centers on learning from
examples, but not from feedback.

4 Christopher J. MacLellan, Kenneth R. Koedinger

et al. (2013) showed that skill models discovered by training SimStudent (a
particular apprentice learner model) align with student data as well as, or bet-
ter than, expert-constructed skill models across three domains. Finally, unlike
prior automated expert model authoring approaches (e.g., Barnes et al., 2008;
Kumar et al., 2014; McLaren et al., 2004), apprentice learner models do not
require a deployable system with existing users or previously available data to
support the tutor authoring process.

In the current work, we aim to evaluate the potential for apprentice learner
models to support tutor authoring by assessing their applicability and effi-
ciency across a broad range of tutors and domains. While prior work has
started to quantify the efficiency gains of these models, particularly the Sim-
Student model (Jarvis et al., 2004; Li et al., 2014; Matsuda et al., 2014),
the past work only focuses on evaluating efficiency gains for a small subset of
tutors (primarily an equation solving tutor) and domains (primarily math).
Additionally, the models from these prior studies utilize domain-specific prior
knowledge to support authoring in these domains, suggesting that a would-be
user needs to author additional content for their domain. Li (2013) has inves-
tigated how to automatically discover domain-specific prior knowledge using
unsupervised learning. However, these approaches require access to training
data in one batch upfront, which may not be available for novel domains. Fur-
ther, it seems unlikely that teachers, or other non-technical domain experts,
will be able to collect/clean-up domain-specific training data and apply un-
supervised learning approaches to them. Taken together, the narrow focus of
previous evaluations and the need for specialized domain knowledge minimizes
claims that these tutor authoring models will be able to support efficient tutor
authoring across domains.

The current study aims to build on this prior work by providing evidence
to support the claims that apprentice learner models: (1) support efficient
tutor authoring and (2) are domain general. Towards this end, we first de-
scribes the Apprentice Learner Architecture, which facilitates the construction
of apprentice learner models, and describes two initial models built using this
framework. Next, we provide a case study of using one of these models (the
Decision Tree model) to author a novel experimental design tutors. We an-
alyze the authoring efficiency of this model and show that it is more efficient
than Example-Tracing, the current state-of-the-art in tutor authoring for non-
programmers. This analysis provides evidence to support our first claim. We
then extend this initial case study to evaluate both apprentice learner models
(the Trestle and Decision Tree models) across seven additional tutor-
ing domains. Our cross domain analysis compares these models to Example-
Tracing as well as human learners and shows that the models are capable of
learning across a wide range of tutors and domains, even without additional
specialized domain knowledge. This second analysis provides evidence to sup-
port our second claim that apprentice learner models are domain-general tutor
authoring tools. Finally, we conclude with discussions and directions for future
work.

Domain-General Tutor Authoring with Apprentice Learner Models 5

Fig. 1 The Apprentice Learner Architecture and its interactions with a tutor. Blue boxes
represent knowledge structures, yellow diamonds represent performance components, and
green circles represent learning components. The selection, action, and input (SAI) represent
the contents of a step in the tutor.

2 The Apprentice Learner Architecture

In this section, we present a modular architecture that builds on prior systems,
such as ACM (Langley and Ohlsson, 1984), CASCADE (VanLehn et al.,
1991), STEPS (Ur and VanLehn, 1995), and SimStudent (Li et al., 2014),
and unifies their mechanisms and theories. This architecture was designed to
interact with tutoring systems. In particular, agents within the architecture
can receive steps from a tutor, attempt these steps or request examples of how
to perform these steps, and receive feedback or examples. Given these interac-
tions, the architecture (see Figure 1) embodies a theory about the knowledge
structures needed to support them and about the performance and learning
components that operate over these structures.3

To support learning from tutor interactions, our architecture posits four
knowledge structures (working memory, relational knowledge, overly-general
operators, and skills), three performance components (relational inference,
how search, and skill execution), and four learning mechanisms (how-, where-,
when-, and which-learning). When an agent from this architecture is faced
with a problem to solve (e.g., what is 2+3?), a match is made between pre-
viously learned skills and the current problem state (represented in working
memory). If any skills match, the agent executes the one with highest util-
ity. If no skills match (a typical initial response), then the agent requests a
demonstration, or bottom out hint, from the tutor (e.g., the tutor might en-

3 The architecture is open source and available at https://github.com/apprenticelearner.

https://github.com/apprenticelearner

6 Christopher J. MacLellan, Kenneth R. Koedinger

Fig. 2 A visual representation of a step in the Chinese tutor and its accompanying relational
description. The correct English translation for this problem is “small”.

ter a 5 in the answer field). The agent then performs how-search to generate
a sequence of mental operations (i.e., a procedure) that explains the tutor’s
demonstration, for example, the agent might explain the demonstration as
the addition of the first and second numbers. Next, the agent uses its how-
learning mechanism to compile this procedure into a new skill structure. After
how-learning, the agent uses where-learning to induce relational heuristic con-
ditions that constrain when the learned skill is considered for later use. Next,
the agent uses when-learning to acquire a classifier that further constrains
when the skill matches once its other conditions are met. Finally, the system
uses which-learning to update the utility of the learned skill. The output of
these steps (a procedure, relational conditions, a classifier, and utility) consti-
tute a new skill. On subsequent problems, the agent attempts to apply learned
skills that it thinks are applicable and receives correctness feedback from the
tutor. This feedback is used in where-, when-, and which-learning to refine the
skills relational conditions, classifier, and utility.

The architecture remains intentionally abstract on implementation specifics
for each component, as different implementations may be preferable in differ-
ent circumstances. For example, implementations of the learning components
that are good for tutor authoring (e.g., that learn efficiently and do not forget)
may not be good for simulating human learning (e.g., if they fail to produce
human-like mistakes), which is another research focus this architecture aims
to support. In this sense, the architecture is similar to other efforts to identify
the mechanisms humans use for learning (Ohlsson, 2011), but it aims to char-
acterize apprentice learning more generally (both human and computational).

Under this characterization, models are defined as implementation choices
for each architectural component as well as initial knowledge configurations.
While explaining each component, we discuss the implementations currently
supported by the architecture and two specific models within this architecture
that are the focus of the remainder of this paper.

2.1 Knowledge Structures

Like many prior cognitive systems, the architecture possesses both short- and
long-term memories to support problem solving and learning. In particular, it

Domain-General Tutor Authoring with Apprentice Learner Models 7

Table 1 Two examples of relational knowledge. The first evaluates equality of two elements
and the second computes unigram relations. Functions are shown in italics.

Head (value-equality ?x ?y) (unigrams ?x)
Conditions (value ?x ?xv), (value ?y ?yv) (value ?x ?xv), (is-string ?xv), (neq ?xv '')
Effects (value-equality ?x ?y ((unigram ?x ?w) for ?w in

(eq ?xv ?yv)) (extract-words ?xv))

has a single, short-term, working memory that describes the current step as
provided by the tutor. This memory contains elements representing particular
objects that occur in a given step, such as fields in a tutor interface, and other
information that describes them. This information is stored using a relational
representation, similar to STRIPS (Fikes et al., 1972) or PROLOG. Figure 2
shows a simple example of a step’s encoding in working memory.4 Elements in
this memory only exist for the duration of a single step before they are cleared
and the information for the next step is provided and stored.

In addition to short-term memory, the architecture has three long-term
memories. The first contains relational knowledge, which matches against ele-
ments in working memory and augments these elements with additional rela-
tions. Table 1 shows two examples of relational knowledge. The first evaluates
whether two elements have equal values. If they do, then it augments work-
ing memory to represent this relationship. The second matches all elements
with non-empty, string values, and augments working memory with unigram
relations that describe these elements.

In general, these structures have three components: a head, conditions,
and effects, which can contain pattern-matching variables (preceded by a “?”)
that bind with elements in working memory. The head contains a name for the
knowledge element, as well as arguments that constrain how it is applied—each
knowledge structure is evaluated once per a given binding of its head argu-
ments. The conditions determine how pattern-matching variables are bound
and describe when a particular piece of knowledge applies. There are two
types of conditions: relations and functions. Both contain pattern-matching
variables, but relations match against working memory elements to determine
possible bindings for variables, whereas functions are only evaluated after all
variables they refer to are bound. Functions appearing in conditions can return
any value, but if they return the Boolean value False, then the current match
fails. Finally, for each successful match, the effects determine how working
memory is augmented in response. Like conditions, effects can contain rela-
tions and functions.

The second kind of long-term knowledge structures, overly-general opera-
tors, are domain-independent primitives for explaining examples. These struc-
tures are similar in composition to relational knowledge—they are described
by a head, conditions, and effects, and have an identical syntax—but they only

4 Typically elements also have type information and slightly more complex hierarchical organization.

8 Christopher J. MacLellan, Kenneth R. Koedinger

Table 2 Two examples of overly-general operators. The first adds two values and the second
concatenates them. Italics are used to represent functions.

Head (add ?x ?y) (concatenate ?x ?y)
Conditions (value ?x ?xv), (value ?y ?yv) (value ?x ?xv), (value ?y ?yv)
Effects (value (add ?x ?y) (value (concatenate ?x ?y)

(str-float-add ?xv ?yv)) (str-append ?xv ?yv))

Table 3 An example fraction arithmetic skill for adding two numerators.

Skill Label add-numerator
Utility 0.8
Legality (value ?n1 ?n1val),
Conditions (value ?n2 ?n2val),

(value ?an '')
Heuristic (name ?n1 Numerator1),
Conditions (name ?n2 Numerator2),

(name ?an AnswerNumerator)
Classifier: <learned-classifier>
Effects: (SAI ?an “UpdateField” (str-float-add ?n1val ?n2val)))

apply during explanation, when domain skills fail. Table 2 shows two examples
of these operators, one that adds two values and one that concatenates them.
The first relies on the str-float-add function, which takes a pair of numbers
represented as either two strings or two floats, adds them, then returns the
sum in a format that mirrors the inputs (either a string or float). The second
uses str-append, which coerces the values into strings, concatenates them, and
returns the resulting string. Note, if either function raises an exception, then
the operator will fail to execute. These types of operators are analogous to
the overly-general operators that occur in STEPS (Ur and VanLehn, 1995)
and CASCADE (VanLehn et al., 1991) in that they are domain-independent
operators with minimal conditions. Thus, they outline possible computations,
but do not specify when these computations should be performed. They are
also analogous to the primitive functions that occur in other systems, such as
ELM (Brazdil, 1978) and SimStudent (Li et al., 2014), in that they often
perform a single function.

The final long-term memory contains domain-specific skills, which are ac-
quired from examples and feedback. Table 3 shows an example of a fraction
arithmetic skill for adding numerators. These structures are acquired via ap-
prentice learning and contain six parts. First, they have a label, which is
an optional, non-unique, human-readable name that is useful for interpreting
learned skills and debugging problem-solving traces. Second, they maintain
a single numeric value representing their utility. Like relational knowledge
and overly-general operators, skills have conditions. However, unlike the other
types, they distinguish between two types of conditions: legality conditions,
which describe when a skill can execute (successful execution also depends

Domain-General Tutor Authoring with Apprentice Learner Models 9

on all functions in effects evaluating successfully), and heuristic conditions,
which describe when the skill should execute. These later conditions do not
need to be met for successful execution, but constrain when a skill applies.
In addition to conditions, skills also have a classifier (e.g., a learned decision
tree) that specifies whether the skill should activate given the current working
memory structure and condition bindings. Although classifiers serve a similar
purpose to heuristic conditions, they are less efficient to apply because each
potential match is evaluated individually (unlike heuristic conditions, which
leverage their logical representation to efficiently exclude entire classes of po-
tential matches). In return, however, they have access to a fully bound state
representation when deciding whether a skill applies. Thus, classifiers are anal-
ogous to operator preference knowledge for accepting or rejecting operators.
Finally, skills have a single relational effect that triggers an attempt of the
current step when deposited in working memory. This Selection-Action-Input
(SAI) effect specifies an interface element (selection), an action to apply to it
(action), and an input to this action (input).

2.2 Performance Components

The architecture includes three performance components that operate over
these knowledge structures. The first handles relational inference, in that it
elaborates any steps provided to the system using available relational knowl-
edge and deposits the result in working memory. Although alternative ap-
proaches are possible, all the models in this paper utilize a forward-chaining
approach that applies relational knowledge until quiescence or until a user-
specified depth limit is reached. This component matches each piece of knowl-
edge once per depth and aggregates any new relations that result from suc-
cessful matches. Once all matching is complete, the new relations are added
to working memory, the depth is increased, and the process is repeated. Infer-
ence terminates when the depth limit is reached or when no new elements are
added at a given depth.

Once inference finishes, if the tutor only provided a step to attempt (no
accompanying SAI and feedback), then skill execution begins. This process
begins by sorting skills by their utilities (highest to lowest) and incrementally
matching them against the updated working memory. As soon as a match is
found, it is executed to generate an SAI (i.e., an attempt). If no skills match,
then the architecture issues a request for an example. Skill matching differs
slightly from relational inference. Like inference, the conditions (both legality
and heuristic) are matched against working memory. However once a match
is found, a skill must also evaluate its classifier to determine if it applies with
the current bindings. The classifier takes as input a modified version of the
current working memory structure as well as the bindings of the pattern-
matching variables to working memory elements. If classification fails, then
pattern matching continues. However, if classification succeeds, then the skill

10 Christopher J. MacLellan, Kenneth R. Koedinger

fires and its effects are deposited in working memory (after any functions are
evaluated and replaced with their resulting values).

The final performance component, how-search, activates after relational in-
ference in situations where the tutor has provided an SAI and feedback (i.e.,
when they provide examples or feedback on prior attempts). This component
constructs explanations of how the provided SAI could have been generated
given the updated working memory structure. In this case, the expert pro-
vides a single SAI (e.g., SAI ”Field1” “UpdateText” “5”) to be explained. In
response, the system applies skill knowledge in a forward-chaining fashion up
to depth one (all skills have a single SAI effect, so search does not need to
proceed further) using the same matching procedure as skill execution. How-
ever, unlike skill execution, SAI effects are not added to working memory.
Instead, they are compared with the provided SAI and all skill instantiations
that yield the provided SAI are returned as explanations. If no explanations
are found, then the search is repeated a second time, ignoring the skill’s heuris-
tic conditions and classifier (i.e., skills are matched based only on the legality
conditions). This second search terminates as soon as the first skill instanti-
ation that explains the SAI is found; it does not compute all matching skill
instantiations because it is often too expensive to compute them all.

If no explanations are found using the existing skill knowledge, then the
component engages in a forward-chaining search using overly-general opera-
tors. For this search, all overly-general operators are applied to working mem-
ory up to a user-specified depth (the models in the current work expand op-
erators to a depth of two). This procedure is similar to relational inference,
but it keeps track of the depth at which inferred elements are added and the
operators that generated them. Elements that already existed in memory prior
to how-search are assigned a depth of zero. Unlike skills, overly-general oper-
ators do not produce SAI effects to compare, so instead the system searches
for any occurrences of the terms in the SAI being explained (e.g., “Field1”,
“UpdateText”, and “5”) in the updated working memory structure. If occur-
rences of a particular term are found, then the system selects the shallowest
occurrence and generates a trace of the operators that produced the element
containing it. If a selected element occurs at depth zero of working memory,
then no operators support it. In these cases, the system generates a trace con-
taining a special “variablize element” operator, which has a single condition
and a single effect that is a variablized version of the element it supports (see
Figure 3 for an example). These discovered traces constitute explanations of
the provided SAI. If there are no occurrences of a particular constant, then
the system leaves them unexplained. Once all constants have been processed,
how-search returns the traces it found and terminates.

2.3 Learning Components

Once how-search has completed, it passes the explanation traces it discovered
to the four learning components, which create and update skills in response.

Domain-General Tutor Authoring with Apprentice Learner Models 11

Fig. 3 An example how-search trace and the resulting skill that is compiled from them. This
skill has a single effect, which is generated by replacing constants in the Selection-Action-
Input (SAI) being explained with the variablized elements that support them, and legality
conditions, which are extracted from the leaves of the explanation structure. The arrowed
lines show which elements support the SAI constants, the double-stroke lines represent
unifications, and the single lines without arrows represent the mappings between conditions
and effects.

The first component, how-learning, creates new skills in situations where the
explanation traces from how-search contain overly-general operators. In these
cases, the component uses a form of explanation-based generalization (Dejong
and Mooney, 1986) to compile the how-search traces into legality conditions
and effects for a new skill. In particular, how-learning regresses over the trace
structures to replace constants in the SAI with appropriate variablizations.
The variablized SAI becomes the effect for a new skill. Additionally, this pro-
cess computes the legality conditions that must be met to successfully evaluate
this new effect. To start this process, all pattern-matching variables that ap-
pear across the trace structure are renamed uniquely to ensure there are no
name collisions during regression. Next, constants in the SAI are replaced with
the particular effects elements that explain them. The system then performs
a breadth-first regression over the trace structure, replacing all occurrences of
each variable with their unifying elements (for unification details see Dejong
and Mooney, 1986). This process continues to the leaves of the traces, stopping
just before replacing variables with their respective working memory elements,
and then the conditions at the leaves of the traces are extracted as legality
conditions for the new skill. Figure 3 shows an example of how-search traces
and the skill that is compiled from them. Once a skill has been compiled, it
is added to skill memory and the how-search output is updated to reflect how
the new skill (and its particular instantiations) explains the SAI. Note, if the
tutor provided a skill label, then it is assigned to the newly created skill.

12 Christopher J. MacLellan, Kenneth R. Koedinger

Once skill applications that explain the provided SAI have been identi-
fied, either from pre-existing skills or those just created via how-learning, the
where-learning component triggers, which takes the tutor feedback (positive
or negative) and each skill application as input and updates the heuristic
conditions of the underlying skills so that they better cover their positive ap-
plications, but not their negative ones. There are many possible approaches to
relational condition learning, but all the models in this paper utilize a very sim-
ple tutor-specific learner that memorizes name-relations that refer to elements
bound in the legality conditions of applications labeled by the tutor as posi-
tive. For example, for the compiled skill in Figure 3, the learner might acquire
disjunctive heuristic conditions given two different positive application: (name
?a “Field1”), (name ?c “Field2”), (name ?d “Field3”) OR (name ?a “Field1”),
(name ?c “Field2”), (name ?d “Field4”). This simple approach, which learns
separate disjuncts for unique sets of name relations occurring in positive appli-
cations, is extremely fast and works surprisingly well in most tutors. However,
the approach produces effectively no generalization across interface elements.
To support more powerful generalization, the system could instead use incre-
mental specific-to-general or general-to-specific relational learners. However,
pilot studies suggested these approaches perform only marginally better (in
tutoring domains) and take substantially longer to run, so we did not explore
them further.

Once where-learning completes, the system activates its third learning com-
ponent, when-learning, which learns a classifier that further constrains when
skills are applicable. This component takes the tutor feedback, working mem-
ory contents, and each skill application as input. The current working mem-
ory structure is augmented with additional information about how pattern-
matching variables are bound to the working memory elements. These aug-
mented structures are combined with the tutor feedback to produce labeled
classification data, which is passed to a concept learning algorithm. Currently,
the system is designed to support incremental algorithms, such as COBWEB
(Fisher, 1987) or TRESTLE (MacLellan et al., 2016). These algorithms, which
are based on psychological studies of how humans learn concepts, incrementally
build probabilistic, multi-attribute classification trees. These trees are similar
to decision trees, but branch on probabilistic combinations of all attributes
rather than single attributes like decision trees. This probabilistic approach
is akin to using a naive Bayes classifier to determine which branch to follow
at each point in the classification tree. These incremental algorithms are also
able to efficiently update this classification tree in response to each new datum
without having to reprocess all of the previous training examples.

Our system also has an interface to the Scikit-learn library (Pedregosa
et al., 2011), which implements many non-incremental concept learning ap-
proaches. In contrast to the incremental algorithms, these non-incremental
approaches reprocess all of the experienced training examples each time they
update their learned classifier. Our system receives the training examples one
at a time (from the tutor); to support these non-incremental approaches, the
system maintains a separate memory of all previous training data and, when-

Domain-General Tutor Authoring with Apprentice Learner Models 13

ever it gets a new datum, it updates this memory and learns an entirely new
classifier from scratch using all available data in a single batch. Thus, the
non-incremental approaches are less efficient to train (they reprocess all ex-
amples after each new example) than incremental approaches, but they learn
higher accuracy classifiers because they reconsider all of the data during each
update. Additionally, for any approaches that do not support relational repre-
sentations (e.g., COBWEB or any of the Scikit-learn approaches), the relations
are flattened into a boolean attribute-values representation using Scikit-learn’s
DictVectorizer transformer.

Once the skill classifiers have been updated, the which-learning component
activates. This final component updates each skill’s utility given the available
applications and feedback. Currently, the system updates the utility to reflect
the average correctness (i.e., accuracy) of each skill based on counts of the
positive and negative applications of each skill that it maintains. However,
in future work, this system might implement alternative approaches, such as
reinforcement learning.

2.4 The Decision Tree and Trestle models

The remainder of this paper explores two models, the Decision Tree and
Trestle models, cast within the Apprentice Learner Architecture. These
models implement the performance and learning components using the ap-
proaches described in the previous section, but differ in their approach to
when-learning: the first uses a non-incremental decision tree learner (Pedregosa
et al., 2011; Quinlan, 1986) and the second uses Trestle, an incremental learner
(MacLellan et al., 2016). Across all of the studies in this paper, both models
are given identical initial knowledge configurations that consists of three types
of relational knowledge and six overly-general operators. In particular, they
have relational knowledge for inferring equality of values (see value-equality
in Table 1), determining editability of interface elements (such as text fields
or drop-down menus), and computing grammar relations on values. The last
kind of knowledge is similar to the unigram knowledge shown in Table 1; but
instead of extracting words, it parses the provided value using a pre-trained
probabilistic context-free grammar and adds elements describing generated
parse trees to working memory. Specifically, it adds elements representing the
nodes in the parse tree as well as left-tree and right-tree relations that describe
how these nodes relate. Finally, it adds value relations that describe the strings
these nodes represent. The probabilistic context-free grammar used by both
models was trained on a large corpus of both English text and math equa-
tions, extracted from the “Self Explanation sch a3329ee9 Winter 2008 (CL)”
(Ritter et al., 2007) and “IWT Self-Explanation Study 0 (pilot) (Fall 2008)”
datasets downloaded from DataShop (Koedinger et al., 2010), using the ap-
proach described by Li et al. (2012). In addition to this relational knowledge,
both models have overly-general operators for adding, subtracting, multiply-
ing, dividing, rounding, and concatenating values. Table 2 shows the add and

14 Christopher J. MacLellan, Kenneth R. Koedinger

concatenate operators; the other operators are almost identical, but perform
their respective operations.

3 An Initial Case Study in Expert Models Authoring

Now that we have described the Apprentice Learner Architecture, and the
models set within it, we next turn to showcasing how one of the latter, the
Decision Tree model, supports efficient tutor authoring. For clarity, the cur-
rent section only focuses on one model, but the Trestle model could also be
used for this purpose. In prior work, Matsuda et al. (2014) showed that Sim-
Student can acquire an equation solving expert model given demonstrations
and feedback. Subsequent work (MacLellan et al., 2014) estimated the time
it would take the average trained developer to author an equation solving
expert model using either SimStudent or Example-Tracing, a widely used
authoring-by-demonstration approach. This work showed that authoring with
SimStudent takes substantially less time than Example-Tracing because it
generalizes from its training, whereas Example-Tracing does not perform any
generalization.

These initial results are promising, but they come with a number of caveats.
First, equation solving is a well-studied tutor domain and, as a result, this prior
work was able to provide SimStudent with domain-specific prior knowledge
(e.g., how to extract coefficients from terms in the provided equations) that
bolstered its efficiency. It remains to be seen how viable this authoring ap-
proach is for domains where domain-specific prior knowledge is unavailable.
Additionally, for comparison purposes, this prior work ignored one of the key
capabilities of the Example-Tracing approach, namely mass production, which
lets authors variablize previously authored problem-specific content and then
instantiate it for many different problems. This approach is essentially a way
for authors to manually generalize Example-Tracing expert models (called be-
havior graphs) to all problems that share isomorphic solution structures. As
generalizability is one of the key dimensions on which SimStudent outper-
formed Example-Tracing in prior work, it is unclear how the two approaches
would stack up when authors can use mass production.

Based on these limitations, the current section investigates two questions:
(1) is authoring with simulated students a viable approach when domain-
specific knowledge is not available, and (2) how does the approach compare
to Example-Tracing with mass production? To investigate these questions,
we describe how to author a novel tutor for experimental design using both
the Decision Tree model and Example-Tracing, then evaluate the efficiency
of each approach. If the Decision Tree model can learn this task, then it
suggests that authoring with simulated students is viable even when domain-
specific prior knowledge is not available—as the model does not have any
specialized experimental design knowledge. Additionally, when evaluating the
efficiency of authoring with Example-Tracing, we assume that, whenever pos-
sible, mass production happens for free. This optimistic estimate of the time

Domain-General Tutor Authoring with Apprentice Learner Models 15

needed to mass produce content provides a more aggressive Example-Tracing
baseline for assessing the Decision Tree model’s efficiency. After presenting
our evaluation of these two expert-model authoring approaches, we conclude
the section by discussing the limitations of each approach.

3.1 Experimental Design Task

Prior work has found that the ability to create well-designed experiments using
the control of variables strategy can be improved by direct instruction (Chen
and Klahr, 1999), and that tutoring middle school students on this strategy
improves their ability to design good experiments (Sao Pedro et al., 2009).
Thus, to demonstrate the authoring capabilities of the Decision Tree model
and Example-Tracing approaches, we decided to use them to author a novel
tutor for experimental design.

To coach students in designing good experiments, we created the tutor
interface shown in Figure 4, which scaffolds students in constructing two-
condition experiments that test the causal relationship between a particular
independent variable and a particular dependent variable. A problem within
this interface presents as a relationship to test (the effect of “Burner Heat” on
“the rate ice in a pot will melt”), available independent variables to manipulate
(“Burner Heat,” “Pot Lid,” and “Ice Mass”), and values that these variables
can take (the heat can be “high” or “low”, the lid can be “on” or “off’, and
there can be “10g” or “15g” of ice). Within this framework, the desired system
tutors students on how to solve problems using the control of variables strategy,
which states that the only way to causally attribute change in a dependent
variable is to manipulate the value of an independent variable while holding all
other variables constant. More specifically, it gives students positive feedback
when they pick values for the target independent variable that differ across
conditions and values for non-target independent variables that are the same
across conditions.

Although it appears simple to build an expert model for this task, from
an authoring-by-demonstration perspective it is deceptively challenging. The
key difficulty lies in the combinatorial nature of problems in this interface. For
example, for the problem shown in Figure 4 there are eight unique solutions to
the problem. Each solution requires seven steps (setting the six variable values
and pressing the done button). Because the order of variable selection does
not matter, there are then 721 ways to achieve each solution (6! + 1). Thus,
there are approximately 5,768 (721 ∗ 8) solutions paths each of length 7. This
yields 40,376 (5, 768 ∗ 7) correct actions in the problem space.

This large number of correct actions, even for a simple problem with only
three variables, each with two values, presents a challenge for non-programmers
attempting to build an expert model using approaches that require them to
demonstrate all correct ways to solve each problem (e.g., vanilla Example-
Tracing). A common strategy authors use to overcome this problem is to con-
strain the number of correct paths by reframing the problem. The following

16 Christopher J. MacLellan, Kenneth R. Koedinger

Fig. 4 The experimental design tutor interface.

tutor prompts for the interface in Figure 4 highlight how different problem
framings affect the number of correct solutions and paths:

One solution with one path Design an experiment to test the effect of
burner heat on the rate at which ice in a pot will melt by assigning the first
legal value to the variables in left to right, top down order as they appear
in the table.

One solution and many paths Design an experiment to test the effect of
burner heat on the rate at which ice in a pot will melt by assigning the
first legal value to each variable, starting with condition 1.

Many solutions each with one path Design an experiment to test the ef-
fect of burner heat on the rate at which ice in a pot will melt by assigning
values to variables in left to right, top down order as they appear in the
table.

Many solutions with many paths Design an experiment to test the effect
of burner heat on the rate at which ice in a pot will melt.

These examples highlight how authors can change the number of paths that
are treated as correct. It is also possible for them to change the underlying
problem space. For example, adding a fourth variable to the interface in Figure
4 would require two more steps per correct path (setting the variable for each
condition), while adding another value to each variable increases the number
of possible options at each step of the solution path. These examples illustrate
that the number of correct actions in the problem space is not an inherent
property of the domain, but rather arises from the author’s design choices
about particular problems and how they are presented.

When building tutors, authors typically have a number of pedagogical
goals, and authoring tools are a means by which these goals are achieved.
However, if authoring tools fail to support authors in achieving these goals,
then they are forced to make compromises. For example, it may be the case

Domain-General Tutor Authoring with Apprentice Learner Models 17

that students will learn more in our experimental design tutor if they have
a larger number of solutions and solution paths, but the developer may be
forced to prompts that are practical to author, even if they are less peda-
gogically effective. This challenge can be described in terms of threshold and
ceiling, from research on user interface software tools (Myers et al., 2000).
More specifically, the threshold of a tool refers to how easy it is to learn and
start using, while the ceiling refers to how powerful the tool is for expressing
an author’s ideas. We argue that, for authoring tools with low thresholds (i.e.,
for non-programmers), the ceiling is not well understood.

To investigate the capabilities and efficiency of the Decision Tree model
and Example-Tracing with mass production, we built an experimental design
tutor using each approach. To create the tutor interface and author the ex-
pert models, we used the Cognitive Tutor Authoring Tools (CTAT) (Aleven
et al., 2009). This toolkit provides a drag-and-drop interface builder, which we
used to create the interface shown in Figure 4. The toolkit also supports two
modes for authoring expert models without programming, Example-Tracing
and Simulated Student. We modified CTAT’s SimStudent authoring mode,
so that it sends all state and interaction information to the Apprentice Learner
Architecture, which runs as a separate process outside of CTAT. Next we will
describe how to author the experimental design expert model using each mode.

3.2 Authoring with Example-Tracing

When building an Example-Tracing tutor in CTAT, the author simply demon-
strates steps directly in the tutoring interface. These demonstrated steps are
then recorded in a behavior graph, which graphically represents the demon-
strated portions of the problem space. Each node in the behavior graph denotes
a state of the tutoring interface, and each link encodes an action that moves the
student from one node to another. Many legal actions might be demonstrated
for each state, creating branches in the behavior graph. Typically an author
will demonstrate all correct actions, but they can also demonstrate incorrect
actions, which they label as incorrect or buggy in the behavior graph. Once
a behavior graph has been constructed for a particular problem, the tutoring
system can use it to train students on that problem. In particular, the tutor
traces a student’s actions along the behavior graph and any actions that cor-
respond to correct links are marked as correct, whereas off-path actions (i.e.,
that do not appear in the graph) or that correspond to incorrect or buggy
links are marked as incorrect.

Figure 5 shows a behavior graph we authored for the experimental design
tutor. The particular prompt chosen (many solutions with many paths) has
eight unique configurations, so we demonstrated each unique configuration in
the interface. Each unique configuration corresponds to one of the paths shown
in the figure. Along each path, the variable values can be chosen in any order.
However, instead of requiring authors to demonstrate each unique ordering,
the Example-Tracing approach lets authors specify that groups of actions can

18 Christopher J. MacLellan, Kenneth R. Koedinger

Fig. 5 A behavior graph for the experimental design tutor. The colored ellipsoids represent
groups of actions that are unordered.

be executed in any order—drastically reducing the number of demonstrations
necessary. Using this approach, we specified that the actions to set variable
values along each path are unordered (denoted in the behavior graph by colored
ellipsoids).

Once we had successfully authored a behavior graph for the first problem,
we next turned to generalizing it with mass production, so it could support
other problems, such as designing an experiment to determine how the slope of
a ramp affects the rate at which a ball will roll down it (Chen and Klahr, 1999).
To create a template for mass production, we first authored the same problem
as before, but instead of entering specific values in the interface, we entered
variables, such as “%(variable1)%” instead of “Burner Heat.” Then we created
an Excel spreadsheet that had a row for each variable and a column for each
problem, where each value in the table corresponds to a particular value for a
particular variable in a particular problem (CTAT generates an empty Excel
file in this format automatically). We then filled out the rows and columns
in this spreadsheet with the new values for each variable and problem and
used CTAT’s mass production capability to combine the variablized behavior
graph with the spreadsheet to create separate grounded behavior graphs for
each problem like the one shown in Figure 5.

Domain-General Tutor Authoring with Apprentice Learner Models 19

This approach supports different problems that have an identical behavior
graph structure, such as replacing all instances of “Burner Heat” with another
variable, “Ramp Slope”. However, if a problem varies in the structure of its
behavior graph, such as asking the student to manipulate a variable in the
second column instead of the first (e.g., “Pot Lid” instead of “Burner Heat”)
or to solve problems with a different number of variables (e.g., letting the
burner heat be “high”, “medium”, or “low”), then a separate mass production
template must be authored for each unique behavior graph structure. Given
this limitation, to support experimental design problems with two conditions
and three variables, each with two values, we ultimately had to author three
separate mass production templates, one for each variable column being tar-
geted.

Next, we turn to evaluating the efficiency of the Example-Tracing approach.
The completed model consists of 3 behavior graph templates (one for each
of the three variable columns that could be manipulated). Each graph took
56 demonstrations and required eight unordered action groups to be speci-
fied. Thus, the complete model required 168 demonstrations and 24 unordered
group specifications. Using estimates from a previously developed keystroke-
level model (MacLellan et al., 2014), which approximates the time needed for
the average trained author to perform each authoring action, we estimate that
the behavior graphs for the experimental design tutor would take 26.96 min-
utes to build using Example-Tracing.5 It is worth noting that the ability to
specify unordered action groups offers substantial efficiency gains—without it,
authoring would require 40,376 demonstrations, or 98.69 hours. Furthermore,
with mass production, this model can generalize to any set of variables by up-
dating the contents of the mass production spreadsheet and then generating
the new behavior graphs. It is worth noting that the number of variables or
values cannot be changed as this would require new behavior graph templates.

3.3 Authoring with the Decision Tree Model

To author an equivalent tutor using the Decision Tree model, authors inter-
actively train a computational agent to perform the task via demonstrations
and feedback directly in the experimental design tutor interface. In turn, the
agent induces an expert model of the task. Rather than representing expert
knowledge using a behavior graph, this model represents it as skills. Like ac-
tion links in the behavior graph, skills describe the correct paths through the
problem space. However, they are compositional and often much more com-
pact. For example, the knowledge encoded in the three behavior graphs for
the experimental design tutor might instead be represented using just three
skills: one for setting the value of a variable to its first value, one for setting

5 The keystroke-level model estimates that it takes the average trained expert 8.8 seconds to demon-
strate an action and 5.8 seconds to specify a group of actions as unordered. Additionally, I
assumed mass producing problems took 0 seconds.

20 Christopher J. MacLellan, Kenneth R. Koedinger

Fig. 6 The Decision Tree model asking for feedback (left) and for a demonstration (right).

the variable value to its second value, and one for specifying that the problem
is done (other skill decompositions are also possible).

For the Decision Tree model to function, it needs access to a relational
representation of each step in the interface. Fortunately, CTAT supports the
ability to automatically generate these representations from interfaces that
were authored using its drag-and-drop tools. In particular, it generates a rep-
resentation with elements for each object in the interface (an element for each
text label, text field, and drop-down menu) and relations to describe them
(name, type, value) and how they relate (contains, for elements that contain
other elements, and before, which describe the order elements appear when
contained within another). Thus, authoring an interface in CTAT is essentially
a way for non-programmers to author the sensors and effectors through which
an agent perceives and interacts with the world. A key caveat of this approach
is that particulars of how the interface was authored impact the agent’s learn-
ing and performance. For example, if the author creates the interface using
a table (which contains rows and columns, which contain cells), then CTAT
will generate a relational representation that affords generalization over rows
and columns. In contrast, if the author creates a similar interface using mul-
tiple text fields, generalization will not be as easy for the agent, although it
is usually still possible. Future work should explore the supplementation of an
agent’s relational knowledge, so it can compute its own spatial relations, such
as left-of, above, and contains. When authoring the experimental design tutor
for the current work, we used multiple individual text labels, text fields, and
drop-down menu elements, in order to show that even the worst case interface
structures (i.e., that lack hierarchical structure) are still sufficient for agents
to learn and perform.

Given a tutor interface and its relational representation, authoring an ex-
pert model with this approach is similar to Example-Tracing in that the simu-
lated agent asks the author for a demonstration when it does not know how to
proceed. However, when it already has an applicable skill, it executes it, shows

Domain-General Tutor Authoring with Apprentice Learner Models 21

the resulting action in the interface, and asks the author to provide correct-
ness feedback on this action. Given this feedback, it refines its skill knowledge
(i.e., its heuristic conditions, classifier, and utility). Figure 6 shows the agent
asking for feedback and a demonstration. A key feature of this approach is
that authors do not need to explicitly specify that actions are unordered—the
agent learns general conditions on its skills that implicitly order its actions.
One additional feature of CTAT’s simulated student mode is that it produces
a behavior graph containing all actions the author has demonstrated or the
agent has taken for each problem. Thus, this approach generates both skills
and behavior graphs. An interesting side effect of this interactive training is
that it produces behavior graphs with both correct as well as incorrect (or
buggy) links, which are often more difficult for instructional designers to an-
ticipate and author.

To author an expert model using the Decision Tree model, we tutored it
on a sequence of 20 experimental design problems presented in the tutor inter-
face. Unlike Example-Tracing, we did not explicitly demonstrate every correct
solution for each problem. Instead, the agent solved each problem a single
way, and we provided it with demonstrations and feedback when requested.
One challenge when authoring with a simulated student is that it is difficult
to determine when it has correctly learned the target skills. This is a problem
also faced by teachers when they are trying to determine whether a human
student has learned something correctly and by developers trying to verify
that a program is correctly implemented. To address this problem, we use a
solution that is common to both scenarios—testing the agent on previously
unseen problems. In particular, we incrementally evaluate its performance on
each subsequent training problem (before providing feedback). The top graph
in Figure 7 shows the performance of the agent over the course of the 20
training problems. This graph provides some insight into when the agent has
converged to the correct skills. In particular, even though the agent solved
the seventh problem without mistakes, it seems unlikely that it has converged
because it made mistakes on the sixth and eighth problems. However, it seems
reasonable to assume that it has converged by the end (i.e., after completing
six problems in a row without errors).

One additional complication we encountered during training was that the
agent has a tendency to learn a single correct strategy and then apply it repeat-
edly (e.g., always setting variables to their first legal value). To discourage this
behavior, we provided demonstrations that displayed a range of strategies (e.g.,
sometimes setting variables to their second legal value). This varied training
produced an agent that used multiple strategies. However, we believe this is an
authoring problem that should be addressed more fully in future work. In par-
ticular, it seems to be an example of the exploration vs. exploitation tradeoff
(Kaelbling et al., 1996), where an agent must decide between exploiting the
strategies it already knows and exploring alternative strategies, potentially
making more mistakes. The Decision Tree model uses skills’ utilities to de-
termine which to try first, always executing higher utility skills. This approach
encourages the agent to exploit its knowledge. However, when authoring, it is

22 Christopher J. MacLellan, Kenneth R. Koedinger

Fig. 7 The average error (top) and cumulative authoring time (bottom) of the Decision
Tree model given the number of experimental design problems authored.

probably preferable to encourage exploration. One simple approach would be
to uniform randomly select matching skills for execution (rather than those
with the highest utility), which would likely reduce the agent’s initial perfor-
mance, but would encourage more exploration of the problem space.

Having successfully authored a skill model using this approach, we next
turned to evaluating its efficiency. While authoring, we tabulated the number
of demonstrations and feedback actions that we performed. Using these tabu-
lations and the keystroke-level model from our prior work (MacLellan et al.,
2014), we estimate that it would take the average trained expert 9.19 minutes
to author an expert model for experimental design by tutoring the Decision
Tree model,6 approximately one third of the time it takes to author the
same tutor with Example-Tracing (about 27 minutes). Additionally, the bot-
tom graph in Figure 7 shows the cumulative authoring time over the course of
the 20 training problems. This curve is steeper at the beginning because the
agent mainly requests demonstrations then. In contrast, by the end of train-
ing the agent only requests feedback, which takes much less time (2.4 vs. 8.8
seconds per request). One limitation of the current model is that it requests
something from the author on every step (either a demonstration or feedback),

6 The original keystroke-level model estimates that, for SimStudent, it takes 10.4 seconds to provide
a demonstration and 2.4 seconds to provide feedback. However, unlike SimStudent, the
Decision Tree model does not require authors to specify foci of attention, so demonstrating
an action takes the same amount of time as Example-Tracing (8.8 seconds).

Domain-General Tutor Authoring with Apprentice Learner Models 23

so the cumulative authoring time curve never levels off. Future work should
explore when the agent can stop requesting feedback on skill applications it
is confident are correct. Such an approach might further reduce the authoring
time.

3.4 Discussion

Our primary finding is that both approaches support the construction of an ex-
perimental design tutor expert model, even though the Decision Tree model
did not have any prior knowledge specific to the domain. This high-level re-
sult provides evidence for the claim that authoring with simulated students
is a viable approach even when domain-specific knowledge is not available.
However, the current domain does not require any overly-general operators.
For example, all input values (e.g., “High”) are directly explained in terms
of the available drop-down menu options (e.g., the first option). Thus, the
primary challenge in this domain is to determine when the agent should pick
the particular menu options (i.e., to discover the correct heuristic conditions
and classifier). For tasks where the agent must construct more substantial ex-
planations of demonstrations, it must have sufficient overly-general operators.
We would argue that the six overly-general operators (add, subtract, multiply,
divide, round, and concatenate) possessed by the current agent are reasonably
general and support tutor authoring across a wide range of domains, and we
will present evidence for this claim in the next section. However, if the agent
ever encounters a domain where it does not have sufficient overly-general op-
erator knowledge, then it might not be able learn effectively. In the absence
of this prior knowledge, the agent simply memorizes unexplained constants,
which enables it to successfully learn problem-specific models similar to those
acquired by Example-Tracing. Although these constant actions are less general
than parameterized actions (e.g., copying a value from one field to another),
they still support generalization in the conditions. Thus, in the worst case
the Decision Tree is at least as general as Example-Tracing, with learned
models typically being more general.

Our second key result is that authoring the experimental design tutor us-
ing the Decision Tree model took about one third of the time needed for
the Example-Tracing approach, even when we assumed that mass production
takes zero time. More specifically, the Example-Tracing approach consisted of
authoring three behavior graph templates (one for each variable column being
targeted), which we estimated would take the average trained expert about 27
minutes to author. An author could use these templates to mass produce any
new problem, as long as they have three variables, each with two values. In
contrast, the simulated student approach consisted of tutoring the Decision
Tree model on 20 experimental design problems, which we estimated would
take approximately 9.2 minutes for the average trained expert. This learned
expert model could also be applied to any novel problem within this interface.
Overall this finding supports our claim that expert models can be efficiently

24 Christopher J. MacLellan, Kenneth R. Koedinger

authored by training simulated students. Further, this work suggests that au-
thoring the experimental design tutor is more efficient with the Decision
Tree model than with Example-Tracing, even when taking mass production
into account. This finding extends previous comparisons of apprentice learner
models and Example-Tracing (MacLellan et al., 2014) that ignored the mass
production capability.

Despite these promising initial results, we did encounter a number of issues
when authoring with the agent. First, it was difficult to know when it had
correctly learned the target skills. This is in contrast to Example-Tracing where
the completeness of the behavior graphs is always explicit. However, sometimes
the behavior graphs are so complex that it is difficult to keep track of what
has and has not been demonstrated. In the current work, we determined when
the agent had correctly learned the skill by evaluating its performance during
training. However, one complication of this assessment is that an agent can
perform well using a single strategy, without knowing other strategies. The goal
of training is to author an expert model that can tutor all of the strategies,
not just one. To ensure that the agent learned all of the strategies, we had
to explicitly demonstrate them to the agent, but future work should explore
how to encourage the agent to explore multiple strategies such as having it
randomly execute matching skills rather than executing those with the highest
utility. This approach would let it discover these alternative strategies on its
own, rather than requiring an author to explicitly demonstrate them.

From a pedagogical point of view, it is unclear whether alternative strate-
gies need to be modeled in a tutor. Waalkens et al. (2013) have explored this
topic by implementing three versions of an Algebra equation solving tutor,
each with progressively more freedom in the number of paths that students
can take to a correct solution. They found that the amount of freedom did not
have an effect on students’ learning outcomes, but argue that tutors should
still support multiple strategies. There is some evidence that the ability to
use and decide between different strategies is linked with improved learning
(Schneider et al., 2011) and subsequent work (Tenison and MacLellan, 2014)
has suggested that students only exhibit strategic variety if they are given
problems that favor different strategies. Regardless of whether multiple strate-
gies are pedagogically necessary, it is important that available tools support
them so that these research questions can be further explored.

Finally, it is important to point out that although the agent-discovered skill
model would not immediately support additional variables or values, it could
be easily extended to support these cases with further training. In particu-
lar, adding a new variable would likely only require a few additional training
problems, so the where-learner can see that the current skills apply to the new
drop-down menus. Similarly, updating an agent’s model to support a new value
would also only require a few training problems, so the agent can learn when
the new value should be selected. In contrast, when using Example-Tracing,
adding a new variable would require an author to construct four new graphs,
one for each column and adding a new variable would require the author to
re-create the three graphs. In both cases the behavior graphs would be larger,

Domain-General Tutor Authoring with Apprentice Learner Models 25

requiring more time to author. It is important to note that training the agent
to support these new situations should not require the author to retrain the
agent from scratch. One final feature of the skill model is that it is general
enough to tutor a student on new variables and values even if they are not
known in advance, whereas the behavior graph must be pre-generated when
using Example-Tracing. This level of generality could be useful in inquiry-
based learning environments (Gobert and Koedinger, 2011), where students
could bring their own variables and values.

3.5 Key Findings of the Experimental Design Case Study

The results of our case study suggest that Example-Tracing and tutoring the
Decision Tree model are both viable approaches for non-programmers to
create tutors. More specifically, we found that the agent-based approach was
more efficient for authoring the experimental design tutor. However, this ap-
proach comes with a number of challenges related to ensuring that the au-
thored model are both correct and complete, and it remains to be seen whether
non-programming authors are comfortable navigating these challenges. In con-
trast, Example-Tracing was simple to use and it was clear that the authored
models were complete, but it took almost three times longer to use. Overall,
this analysis supplements prior work showing that Example-Tracing is good
for authoring a wide range of problems for which non-programmers might want
to build tutors (Aleven et al., 2009). However, authoring with the Decision
Tree model shows great promise as a more efficient approach—particularly
for tutors that require multiple, complex, mass-production templates.

Our analysis also identified situations where these approaches encounter
difficulties. The Example-Tracing approach has mechanisms for dealing with
unordered actions, but it struggles as the overall number of final solutions—
or solution structures, when using mass production—increases because each
must still be demonstrated. Conversely, the Decision Tree model has dif-
ficulties when there are multiple correct strategies. In these cases, it has a
tendency to learn a single strategy and to apply it repetitively. This behavior
has been observed in other programming-by-demonstration systems, and there
exist techniques for demonstrating alternative strategies (McDaniel and Myers,
1999). Another approach would give the agent problems that favor different
strategies to encourage variety, similar to tutoring real students (Tenison and
MacLellan, 2014).

Our findings also shed light on the thresholds and ceilings (Myers et al.,
2000) of existing tutor authoring approaches. For example, hand authoring an
expert model has a high threshold (hard to learn), but also a high ceiling (you
can model almost anything with enough time and expertise). Example-Tracing,
on the other hand, has a low threshold and a comparatively low ceiling. How-
ever, for problems that require many complex mass-production templates, our
results suggest the ceiling is higher than one might think. Functionality for
specifying that actions in a behavior graph are unordered and mass producing

26 Christopher J. MacLellan, Kenneth R. Koedinger

content greatly amplify Example-Tracing. By contrast, the agent-based ap-
proach has a threshold similar to Example-Tracing, but it has a higher ceiling
because of its ability to generalize.

This work demonstrates the use of Example-Tracing and the Decision
Tree model for authoring a novel experimental design tutor. Our evaluation
of these two approaches for this authoring task extends the prior work on
authoring tutors with simulated students (MacLellan et al., 2014; Matsuda
et al., 2014). In particular, our results show that authoring with simulated
students is viable even when domain-specific knowledge is unavailable. Further,
they suggest that the approach can be more efficient than Example-Tracing,
even when taking into account mass production, which prior work failed to do.
This work further advances the goal of developing a tutor authoring approach
that is as easy to use as Example-Tracing (low threshold), but that is as
powerful as hand authoring (high ceiling).

4 Authoring Expert Models Across Domains

The previous section provided a single example of how apprentice learner mod-
els can support tutor authoring. In this section, we endeavour to convince the
reader that our two preliminary models (the Decision Tree and Trestle
models) are general enough to support tutor development across a wide range
of tutoring domains, even though they draw on a small, fixed set of prior
knowledge. It is impossible to prove that these models will be able to support
development of any tutor, so we instead focus on demonstrating their use in
seven tutoring systems that teach different kinds of knowledge across a wide
range of domains that include language, math, engineering, and science. We
hope that this presentation will make clear the wide applicability of the cur-
rent models and provide some insight into their current limitations. It is worth
mentioning that this focus on generality and demonstrating functionality ex-
pands the current literature, which emphasizes results in just one or a few
domains.

To support a claim of generality, we have chosen to highlight the abil-
ity of these models to acquire knowledge across the types outlined in the
Knowledge-Learning-Instruction framework (Koedinger et al., 2012), which
characterizes knowledge in terms of whether it has constant or variable stim-
uli and responses.7 Although almost all stimuli and responses are variable in
some respect, this distinction is meant to capture the qualitative distinction
between minor variability, such as the use of different fonts for a word, from
more substantial variability, such as the use of different words.

Within this framework, we have chosen to author tutoring systems that
teach associations, categories, skills, or combinations of these types. Associa-
tions involve knowledge that has a constant stimulus and constant response

7 This framework also distinguishes between knowledge that is explicit or implicit and that does or
does not have a rationale, but we only focus on implicit knowledge without a rationale in
the current work.

Domain-General Tutor Authoring with Apprentice Learner Models 27

(a) (b)

Fig. 8 The fraction arithmetic tutor interface used by the human students (left) and the
isomorphic tutor that was recreated using simulated agents (right). If the current fractions
need to be converted to a common denominator, then students must check the “I need to
convert these fractions before solving” box before performing the conversion. If they do not
need to be converted, then they enter the result directly in the answer fields (without using
the conversion fields).

(e.g., respond with the constant “small” whenever presented with the con-
stant “ ”). Slightly more general are categories, which encode knowledge with
a variable stimulus and a constant response (e.g., respond with the constant
“stable” whenever presented with a tower of blocks that is symmetrical, has a
wide base, and has a lower center of mass). Finally, skills represent knowledge
with a variable stimulus and a variable response (e.g., whenever presented with
any two numbers with a plus sign between them respond with their sum).

4.1 The Seven Tutoring Systems

To demonstrate the generality of our apprentice learner models, we applied
them to replicate seven tutoring systems that have human data available in
DataShop (Koedinger et al., 2010): the fraction arithmetic tutor (Patel et al.,
2016), the Chinese character tutor (Pavlik et al., 2008), the English article se-
lection tutor (Wylie et al., 2009), the RumbleBlocks stability tutor (MacLellan
et al., 2016), the boxes and arrows tutor (Lee et al., 2015), the stoichiometry
tutor (McLaren et al., 2006), and the equation solving tutor (Ritter et al.,
2007). These tutors were selected because they teach multiple types of knowl-
edge and span a wide range of content domains. They are also good examples
of tutoring systems that have been fielded with real students. Thus, a finding
that apprentice learning models support tutor development across all seven
tutors is strong evidence for the generality of the models. Towards this end,
we start by reviewing each tutoring system in turn.

First, we created a fraction arithmetic tutor, see Figure 8. This tutor
presents students with either fraction addition problems with same denom-
inator, fraction addition problems with different denominators, or fraction
multiplication problems. In the case of fraction addition with different denom-
inators, it teaches students to convert the fractions into common denomina-
tors using cross multiplication (multiplying the two denominators to create a

28 Christopher J. MacLellan, Kenneth R. Koedinger

common denominator). Patel et al. (2016) designed this tutor for a classroom
experiment to determine whether blocking or interleaving these different types
of fraction arithmetic problems produced better learning. This tutor teaches
categories for labeling whether conversion is needed and skills for performing
the arithmetic

Fig. 9 The original interfaces for six additional tutoring systems that have been previously
used with real students.

Domain-General Tutor Authoring with Apprentice Learner Models 29

Figure 9 shows the six additional tutoring systems that we replicated. The
first of these is the Chinese character tutor (Pavlik et al., 2008), which is essen-
tially a sophisticated flashcard program that tasks students with translating
particular characters into either English or Pinyin. The tutor, which focuses
on teaching students associations (i.e., knowledge with a constant stimulus
and constant response), was designed to use an optimized spacing model to
improve students’ retention of knowledge.

The next tutor is the English article selection tutor Wylie et al. (2009),
which scaffolds students in selecting the correct article (a, an, or the) for En-
glish sentences (e.g., teaching students when to say a book vs. the book). This
tutor teaches students category knowledge, which encodes a variable stimulus
(different English sentences) and constant response (particular English arti-
cles).

The third system is the RumbleBlocks stability tutor (MacLellan et al.,
2016), which asks students to categorize images of block towers produced in
the RumbleBlocks game (Christel et al., 2012). This tutor teaches students the
engineering concept of stability. Like the article selection tutor, it supports
students’ acquisition of category knowledge; e.g., multiple towers (variable
stimulus) map to “stable” (constant response).

The fourth tutor is for boxes and arrows problems Lee et al. (2015), which
each contains three numbers, two operators (+, −, × or /), and one arrow that
points to the empty field (e.g., 3 + 2→ 7−). These rules for solving these
problems were designed to be intentionally arbitrary and the primary challenge
students face in this tutor is discovering the correct rules given the feedback.
There are two types of problems, easy and hard problems, distinguished by the
color of the arrow (our descriptions use → to denote easy problems and ⇒ to
denote hard problems). In both cases, students try to enter the correct number
in the empty field and are given correctness feedback. For the easy problems,
the correct answer is computed by performing the arithmetic specified in the
top boxes (i.e., the arithmetic to the left of the arrow in our example, 3 + 2)
and putting the result in the empty field. In contrast, for the hard problems,
the correct answer is produced by entering a value in the empty box that
makes the arithmetic in the bottom boxes (7 −) equal to the value in the
top boxes that is on the opposite side as the empty box (3). For example, the
correct answer to 3 + 2⇒ 7− is 4 because 7− 4 = 3. This tutoring system
teaches skills (i.e., variable to variable mappings).

Next is the stoichiometry tutor McLaren et al. (2006), which coaches stu-
dents on how to do unit, molecular, solution, and composition stoichiometry
conversions. As part of these conversions, it also teaches students how to label
the types of conversions they are performing, to properly cancel their units,
and to round their answers to a specified number of significant digits. Thus,
the tutor teaches students both categories (e.g., to label the type of conversion)
and skills (e.g., to compute the answer).

The last system is the equation solving tutor (Ritter et al., 2007), which
guides students in solving two-step linear equations with a single variable.
This tutor presents students with eight different types of problems that vary

30 Christopher J. MacLellan, Kenneth R. Koedinger

in which side the variable initially appears (left or right), which term the
variable occurs in on a given side (first or second), and the types of operations
that need to be performed to solve the problem (subtract then multiply or
subtract then divide). When presented with a problem, students first choose
a transformation to perform (e.g., subtract from both sides), then they choose
an amount for that transformation (e.g., subtract 9 from both sides). Finally,
they apply the transformation—updating both the left and right sides of the
equation. One complication was that the original tutor had problems where
students select a transformation and the tutor performs them. For example,
on one of these problems a student might specify the “subtract from both
sides” transformation with the amount “9” and the tutor would automatically
subtract 9 from both sides and update the left and right sides of the equation.
There was no straightforward way to replicate this functionality, so we instead
just created versions of these problems where the student performed all the
actions. This tutor teaches students a combination of both categories (e.g.,
picking the correct transformation to perform) and skills (e.g., performing the
transformations).

4.2 General Authoring Approach

To test if the Decision Tree and Trestle models could support tutor devel-
opment across these seven tutors and evaluate their efficiency at doing so, we
created isomorphic versions of each tutor that our apprentice learning agents
could interface with, see Figure 10. We authored each of our tutors using the
Cognitive Tutor Authoring Tools (CTAT) (Aleven et al., 2006). We created the
interfaces using CTAT’s drag-and-drop interface builder and authored behav-
ior graphs for each tutor using Example-Tracing (Aleven et al., 2009). When
authoring these interfaces and behavior graphs, we did our best to maintain a
close alignment to the original tutor designs, but this was not always possible
and a number of discrepancies arose. Some differences were due to a lack of
access to the original tutors or screenshots of them. We often had to reverse
engineer the tutors’ behavior using only the available DataShop log data and
textual descriptions of the original tutors as a guide. This was the case for the
Chinese character tutor, where we can only guess that the original interface
looked similar to the one used in the MoFaCTS system, which was created by
the same author (Pavlik et al., 2016) and is shown in Figure 9.

Authoring these tutors using Example-Tracing provided a baseline that we
could evaluate our two apprentice learning models against. Additionally, we
were able to use the behavior graphs produced by Example-Tracing to au-
tomate the process of interactively training each apprentice learning agent.
Thus, rather than manually training each apprentice learning agent for our
efficiency evaluation, we used the Example-Tracing tutor to interactively pro-
vide demonstrations and feedback to our agents. This approach enabled us to
evaluate the efficiency of both the Decision Tree and Trestle models and
to compare their authoring efficiency to that of Example-Tracing. Despite this

Domain-General Tutor Authoring with Apprentice Learner Models 31

Fig. 10 Isomorphic CTAT Interfaces for five of the seven tutors. The fraction arithmetic
tutor is shown in Figure 8. Additionally, the RumbleBlocks tutor was very simple, consisting
of a single input (the block configuration) and a single binary output (stable or not), so we
created a script that simulated the tutor interface without actually authoring one using
CTAT.

automated approach, our models still support interactive training with human
authors and we other research efforts that are currently investigating real end-
users’ experiences with authoring tutors using apprentice learner models (e.g.,
Weitekamp et al., 2020).

Given that every interactive authoring session could take a non-deterministic
trajectory,8 we authored each tutoring system multiple times to get a better
sense of the agents’ overall performance. For these multiple runs, we conducted
a separate authoring simulation for each sequence that one of the human stu-
dent who used the original version of the tutor received. This approach pro-
duced reasonable variety in the training sequences and had the added benefit
that it let us directly compare the learning performance of our agents to that
of the human students that used the tutor.

4.3 Model Evaluation

4.3.1 Overall and Asymptotic Performance

To assess the tutor development capabilities of these models across the seven
tutor domains, we first looked at the overall and asymptotic performance of
the two models. Additionally, we computed the overall and asymptotic per-
formance of humans in each of these tutors as a baseline for evaluating the
performance of the two models. These results are shown in Figure 11.

To compute the overall accuracy for each model and for the humans, we
took the average performance across all tutored steps. For this calculation,
a correct step was counted as an accuracy of 1 and an incorrect step or a

8 Given the same sequence of instruction problems, the agents might take different actions and learn
different knowledge as a result

32 Christopher J. MacLellan, Kenneth R. Koedinger

Fig. 11 The overall (opaque) and asymptotic (semi-transparent) accuracy for each type of
agent in each tutor. The 95% confidence intervals are shown for the overall accuracy. The
asymptotic accuracy was computed by fitting a mixed-effect regression model to each data
set and using it to predict the performance on the practice opportunity where at least 95%
of the data had been observed. This approach gives an estimate of the accuracy achieved in
each tutor by the end of training (over all agents and skills).

hint request was counted as a 0. In all cases, the step was evaluated prior to
providing the demonstrations/feedback to the model or human, so all evalua-
tions are on previously unseen data. One limitation of using overall accuracy
as a metric, is it does not provide a picture of the models accuracy towards
the end of training; it averages over earlier practice, which typically has lower
accuracy, and later practice, which typically has higher accuracy.

To overcome this limitation we computed the asymptotic performance for
each model (i.e., what is the average performance of the model at the end
of training). To compute asymptotic performance, we labeled each step in
both the human and simulated data sets by the skill or knowledge compo-
nent (Koedinger et al., 2012) it exercised. Then, for each first attempt (the
first time performing a particular step on a problem), we computed the prior
number of opportunities a student had to exercise the same skill. Using these
values, we fit a linear mixed-effects binomial regression model to each data set
(Bates et al., 2015), which had a single fixed effect for practice opportunity, a
random intercept and slope (practice opportunity) for each skill, and a random
intercept for each student. This model, which is represented using the R lme4
formula correctness ∼ opportunity + (1 + opportunity|skill) + (1|student), is
similar to a repeated measures ANOVA and analogous to the Additive Factors
Model (Cen, 2009) used for learning curve analysis.

Domain-General Tutor Authoring with Apprentice Learner Models 33

For each data set, we used the fixed-effects estimates for the intercept
and opportunity to predict performance for the average agent and skill on
the opportunity where at least 95% of the data for the respective data set
had been observed. These asymptotic accuracies, which are plotted in Figure
11 as semi-transparent bars, represent the performance for the average agent
and skill at the end of practice in each tutor for each agent type. It is worth
noting that we chose a threshold of 95% because some skills were practiced
by some students much more than others. A threshold of 100% would equate
to evaluating the accuracy for all skills at the maximum practice opportunity
observed across all students and skills. In contrast, a threshold of 95% covers
most of the students and skills, but is more flexible with respect to ignoring
students and skills with an unusually high number of practice opportunities.

In terms of overall performance across all tutor steps, humans generally
have higher scores than the Decision Tree model, which generally has higher
performance than the Trestle model. However, some exceptions exist. For
example, Trestle outperforms the Decision Tree model in the Chinese
character tutor, and both models have slightly higher performance than hu-
mans on RumbleBlocks and boxes and arrows. It is worth noting that these
latter tutors were the ones specifically designed to minimize the effect of stu-
dents’ prior knowledge, putting humans on an equal playing field with the
models. The stoichiometry and equation solving tutors show the biggest dif-
ferences in performance between agents and humans, likely because human
students probably bring more prior knowledge in these tutors. For example,
the human students that used the equation solving tutor (which teaches two-
step linear equation solving) had all previously completed a unit on one-step
linear equations. Additionally, these tutors have the biggest differences be-
tween the original and replicated versions of the tutors. In general, these re-
sults extend previous work with SimStudent (Li, 2013), which showed that
domain-specific models can learn to solve easier problems in article selection,
fraction arithmetic, equation solving. It is worth noting that in many cases
these prior models were trained with an easier subset of the problems than we
explore here.

The situation is different for the asymptotic accuracies. For Chinese char-
acters, article selection, fraction arithmetic, and stoichiometry, both the De-
cision Tree and Trestle models seem to have learned the target skills
by the end of training. However, of these four domains, humans only seem
to have mastered two—Chinese character and fraction arithmetic. For Rum-
bleBlocks, we find that the Trestle model does best . For boxes and ar-
rows, the Decision Tree model outperforms both humans and the Trestle
model. Apparently the Decision Tree model’s non-incremental approach to
when-learning performs better on this task. In contrast, Trestle produces
asymptotic behavior that is more similar to the humans. Finally, in equation
solving, the Trestle model performs worse asymptotically than both the
Decision Tree model and the humans. In general, these results support a
domain-general version of the claim that these apprentice learner models can
support tutor authoring. In particular, they show that even though the sim-

34 Christopher J. MacLellan, Kenneth R. Koedinger

ulated agents perform worse than humans in terms of overall error over the
course of training, by the end of training they are able to achieve human-level
performance or better in all but the equation solving tutor.

4.3.2 Expert-Model Authoring Efficiency

We next analyzed the efficiency of the two models for the purposes of author-
ing, similar to the efficiency analysis used in our case study of an experimental
design tutor. For this analysis, we tabulated counts of the number of examples
and feedback that the tutors provided to each agent. By treating each tutoring
systems as a stand-in for a human author, we were able to compute the number
of demonstration and feedback interactions necessary to train each simulated
agents and evaluate the time it would take an average trained developer to
train the agents. Additionally, each of the tutoring systems was built using
Example-Tracing, so it was straightforward to evaluate the efficiency of this
alternative approach for comparison purposes by tabulating the number of
links in the authored behavior graphs.

When analyzing the efficiency of these authoring techniques, we used the
approach from the previous section. In particular, we used the Keystroke-Level
Model (KLM) from our previous work (MacLellan et al., 2014) to estimate the
time it would take a trained, error-free, author to build expert models for the
seven tutors using either simulated students or Example-Tracing. This esti-
mates that demonstrating an action in the tutor interface takes approximately
8.8 seconds using either the simulated student or Example-Tracing approach.9

The model also estimates that specifying a group of unordered actions (when
Example-Tracing) takes 5.8 seconds and providing feedback (when training
simulated agents) takes 2.4 seconds. Finally, we assume that mass production
steps take zero seconds.

When building the seven tutors using Example-Tracing, we authored the
following tutor content:

– Chinese character: 586 behavior graphs (one mass production template
with 2 demonstration links);

– Article selection: 84 graphs (one template with two demo links);
– Boxes and arrows: 64 graphs (two templates, each with two demo links);
– Fraction arithmetic: 84 graphs (three templates with 22 demo links);
– Stoichiometry: 16 graphs (eight templates containing 897 demo links and

30 unordered action groups); and
– Equation solving: 1357 graphs (six templates with 53 demo links and 24

unordered action groups).

Additionally, we did not create a new RumbleBlocks tutor, but for the cur-
rent analysis, we estimated that it would require 139 behavior graphs (two

9 The original model predicted 10.4 seconds for SimStudent demonstrations because it required
authors to provide foci of attention. However, demonstrating with the current models does
not require these foci, so it is identical to demonstrating in Example-Tracing.

Domain-General Tutor Authoring with Apprentice Learner Models 35

Fig. 12 The estimated amount of time (in minutes) it would take the average trained author
to build an expert model for each of the seven tutors using either Example-Tracing or one
of the two simulated student models. Both simulated agent approaches are shown with 95%
confidence intervals, where the variation is due to differences in the number of interactions
for each model across each student training sequence. These estimates were generated by
tabulating the number of authoring actions required by each approach and converting these
counts into an overall time estimate using a keystroke-level model (MacLellan et al., 2014).

templates containing two demo links). We multiplied these counts by the ap-
propriate estimate from the KLM, to estimate how long it would take the
average trained author to build the behavior graph templates for each tutor.

To estimate the time needed for each simulated student approaches, we
tabulated the total amount of examples and feedback that were provided to
all of the simulated students across all of the simulations. Using the KLM, we
estimated the total amount of time needed to train each agent. We averaged
these estimates to generate the results shown in Figure 12.

4.4 Discussion

In contrast to the previous results in experimental design, this analysis shows
that for all domains except stoichiometry, it is substantially more efficient to
author the expert model using Example-Tracing. This unexpected finding sug-
gests that one approach is not always better than the other, as the previous
section and previous work (MacLellan et al., 2014) might suggest. A closer
inspection of stoichiometry tutor shows that each of the behavior graphs in
this tutor are complex, requiring hundreds of demonstrations, and most prob-
lems have different behavior graph structure, so they required separate mass
production templates. These characteristics make this tutor similar to the ex-

36 Christopher J. MacLellan, Kenneth R. Koedinger

perimental design tutor, which we have already shown is more efficient to au-
thor using the simulated student models. These results suggest that for tutors
that have simple behavior graph structure (i.e., that have a small number of
solutions and solution paths) and that have problems with identical behavior
graph structure (i.e., benefit from mass production), then it is more efficient
to author the expert model using Example-Tracing. However, when authoring
tutors with more complex behavior graph structures and that require multiple
mass production templates, authoring with apprentice learner models is more
efficient.

It is also possible that these results are an artifact of the assumptions
adopted in the efficiency analysis. In particular, the KLM assumes that au-
thors are error free in their authoring, which is very optimistic. When author-
ing the behavior graphs for our simulations, we made many mistakes and it
took us substantially longer to author these tutors. For example, authoring
the behavior graphs using the Example-Tracing approach for the stoichiom-
etry tutor alone took us at least three full eight-hour days of authoring, and
this was after a week of designing the interface and planning the appropriate
behavior graph structure. When authoring more complicated graphs, we of-
ten made mistakes that would not be apparent until the end, and we would
have to re-author the entire graph.10 In contrast, authoring mistakes will harm
the simulated agents’ learning, but the simulated agents should be able to re-
cover from these mistakes given more training (i.e., the author does not have
to retrain the agent from the beginning). However, this claim remains to be
tested.

The KLM also fails to take into account preparation and planning time. In
particular, we found it challenging to author behavior graph templates (with
variables rather than specific values) directly. Typically, before authoring a
template, we would author a complete behavior graph for one or two specific
problems, and then think about how we could author a template that would
generalize these problems. Ignoring the time spent planning, if we added the
demonstrations needed for these preliminary behavior graphs to our estimates,
it would double or triple the authoring time. In contrast, training the simulated
agents only required us to provide demonstrations and feedback on specific
problems, which required us to do less preparation and planning.

Additionally, the authoring time results show that expert models with a
lot of unique problem content, such as hundreds of Chinese characters and
their translations, take substantially longer to build with the simulated agent
approaches. This is likely due to the assumption that mass production steps
take zero seconds, an unrealistic assumption. We aimed to show that, even in
the best case, for tutors requiring complicated graph structure like stoichiom-
etry and experimental design, authoring with simulated agent models is still
more efficient than Example-Tracing with mass production. However, this as-

10 If the errors were minor, then it might be possible to edit the graph rather than re-creating it.
However, for more complex graphs, it was often difficult to verify that all errors had been
corrected and it was typically easier to re-create the graphs correctly than to try to edit
them.

Domain-General Tutor Authoring with Apprentice Learner Models 37

sumption has a side effect of hiding how long mass production actually takes.
At the very least, it requires the author to input content for each problem
into cells in an Excel spreadsheet, which we suspect would be comparable to
demonstrating the specific problem content to the simulated agents.

Finally, one key challenge with the simulated agents is determining if they
have acquired correct and complete expert models. To overcome this chal-
lenge in practice, authors could track a simulated agent’s performance during
training and stop training only once it has achieved an acceptable level of
performance. Applying a similar idea to the simulation data, the asymptotic
accuracy results (see Figure 11) suggest that agents in the Chinese characters,
article selection, fraction arithmetic, and stoichiometry tutors have mostly con-
verged to 100% correct. However, in the RumbleBlocks, boxes and arrows, and
equation solving tutors, agents achieve lower asymptotic accuracies, suggest-
ing they might need more training. The towers in the RumbleBlocks tutor are
non-deterministically labeled using a free-body physics simulator, so the model
will never be able to achieve 100% accuracy. In boxes and arrows, agents only
received four examples for each skill, and clearly more training is necessary to
learn the correct skills. Similarly, the equation solving tutor had not converged
and would require more training before one could consider it finalized.

Overall, these results provide the most rigorous evaluation of authoring
tutors with apprentice learner models to date, replicating the findings of the
previous sections across seven tutor domains. They provide insight into when
authoring with simulated agents is preferable to authoring with Example-
Tracing, such as when multiple complex behavior graphs are required. More-
over, they show that the Decision Tree and Trestle models can success-
fully learn skills across the seven tutor domains, even though they draw on a
fixed set of domain-general prior knowledge.

4.5 Key Findings of the Cross-Domain Study

The results of this section further support our high-level claims. First, they
indicate that building expert models by training simulated agents is viable
even when domain-specific knowledge is not available. In this case, both the
Trestle and Decision Tree approaches can efficiently learn expert models
for the Chinese character, RumbleBlocks, article selection, fraction arithmetic,
and stoichiometry tutors as determined by asymptotic accuracy. Further, these
approaches appear to be effective in the other tutors (boxes and arrows and
equation solving), but more training would be necessary for them to learn
correct and complete expert models. In either case, the results demonstrate
that domain-specific knowledge is not necessary for successful tutor authoring.

Second, they indicate that training simulated agents is an efficient author-
ing approach comparable to Example-Tracing with mass production. However,
it appears that neither approach strictly dominates the other. For tutors that
require only a few solutions and paths per problem, the Example-Tracing ap-
proach appears to be more efficient. In contrast, for tutors that require multiple

38 Christopher J. MacLellan, Kenneth R. Koedinger

complex behavior graphs with many solutions and paths per problem, such as
the experimental design and stoichiometry tutors, authoring with simulated
agents appears to yield better efficiency. In the other cases, authoring with
Example-Tracing seems to be more efficient; however, the current analysis ig-
nores the cost of mass production. More work is needed to better quantify
the cost of mass productions so it can be more appropriately compared with
apprentice learning models.

In conclusion, this section demonstrates the general capabilities of our mod-
els. Even though they draw on a small, fixed set of domain-general prior knowl-
edge, they can learn and perform across seven tutoring systems that vary in
types of knowledge (associations, categories, and skills) and domain content
(language, math, engineering, and science). The findings from this section sup-
port our overarching claim that apprentice learner models are general-purpose
tools capable of supporting tutor development.

5 Conclusions and Future Work

In this paper, we explore the use of apprentice learning models, or computer
models that learn from examples and feedback, for supporting tutor develop-
ment. To support these investigations, we presented the Apprentice Learner
Architecture, described its application for authoring a novel experimental de-
sign tutor, and analyzed its ability to author seven additional tutors across
a wide range of domains. Across this work, we have endeavoured to convince
the reader of two main claims. In particular, that apprentice learner models
(1) support efficient expert-model authoring and (2) are domain-general tools.
This section reviews each claim, the evidence to support them, and discusses
limitations and directions for future work related to each claim.

Support Efficient Expert-Model Authoring

First, we set out to show that apprentice learning models can support effi-
cient authoring of tutor expert models, even when they lack domain-specific
prior knowledge. To support the efficiency aspect of this claim, our case study
in authoring an experimental design tutor showed that using the Decision
Tree model takes about one third of time it takes to author an equivalent
tutor using Example-Tracing, even when assuming that mass production (a
technique for generalizing Example-Tracing content to new problems) takes
zero time to use. Our subsequent cross domain analysis, however, suggest that
one approach is not always better than the other. In particular, it shows that
Example-Tracing is more efficient for six out of the seven additional tutor do-
mains analyzed (stoichiometry was more efficient with the Decision Tree
model). A closer analysis of the differences between the stoichiometry and ex-
perimental design tutors and the other tutors suggests that authoring with
simulated agents is preferable for tutors with complex problem spaces (i.e.,

Domain-General Tutor Authoring with Apprentice Learner Models 39

those with many possible solutions and many alternative paths to each so-
lution). In contrast, for simpler domains, Example-Tracing appears to be a
more efficient approach. However, the analysis leading to these conclusions as-
sumes that mass production takes zero additional time, which is an unrealistic
assumption (in favor of Example-Tracing). Thus, future work should explore
how to incorporate the cost of mass producing content into the authoring time
evaluation.

Additionally, the current evaluation ignores Example-Tracing’s formula
editing capabilities, which lets developers use formulas to reduce the number
of behavior graph demonstrations needed. Although one might argue that use
of this capability requires specialized authoring expertise, future work should
explore how authoring with simulated agents compares to Example-Tracing
when developers can also use this capability. Even though we found that Ex-
ample Tracing are typically more efficient than apprentice learner models,
the current work suggests that authoring with apprentice models is generally
comparable to that of Example Tracing and shows great promise as a tool for
scaling up tutor authoring for non-programmers.

Finally, there were some limitations of the KLM we used to estimate the
authoring efficiency of each approach. Specifically, the KLM estimates it should
take on the order of minutes to author many of the tutors in our study, but our
qualitative experience actually authoring these tutors suggests that it takes
much longer (hours to days). Based on our experience, the main reason for
the discrepancy is that the KLM assume the human author is trained (knows
exactly what steps to do next) and is error free, which are two very strong
assumptions. We argue that our KLM is a useful tool for comparing different
authoring approaches, as it highlights when one authoring approach might be
preferable to another (e.g., example tracing ¿ apprentice learner models for
tutors with simple problem spaces). However, future work should explore how
to account for errors and error correction during the authoring process within
the KLM estimate.

Are Domain-General Tools

Our second high-level claim is that these models are domain general and can
support learning of multiple knowledge types across a wide range of domains,
even though they draw on a small, fixed set of prior knowledge. Our case study
and cross domain evaluation provides the main evidence to support this claim
by showing that apprentice learner models support authoring across eight dif-
ferent tutors (experimental design and the seven other tutors). Moreover, these
tutors teach a wide range of knowledge types and cover multiple content do-
mains, suggesting that the true generality of the models is greater than what
we explicitly demonstrated. One limitation of the current work is that it fo-
cuses on modeling learning in tutoring systems, rather than educational tech-
nologies more broadly. This broader class of educational technologies comes
with additional challenges, such as realtime interaction (as opposed to step-

40 Christopher J. MacLellan, Kenneth R. Koedinger

based interaction in tutors), delayed feedback (opposed to immediate feedback
in tutors), and a general increase in complexity. Future work should explore
how to extend the current models beyond tutors to other learning environ-
ments, such as educational games (see Harpstead, 2017), inquiry learning, and
programming environments.

In conclusion, this paper makes contributions to the fields of human-computer
interaction, artificial intelligence, and intelligent tutoring systems. It demon-
strates meaningful progress towards a domain-general, machine-learning pow-
ered tutor authoring tool (the Apprentice Learner Architecture), that lets
non-programmers author tutors by providing examples and feedback—similar
to how they would teach a human student. We show that this tool can support
efficient expert model authoring across a wide range of tutors and domains,
without the need to hand-author specialized knowledge for these domains. Our
hope is that this new tool can lay the foundation for subsequent research to
support teachers and instructional designers in creating pedagogically effective
educational technologies at scale.

Acknowledgements This work was started while I was a PhD student at Carnegie Mellon
University and I continued to develop these ideas while working at Soar Technology, Inc.
and at Drexel University (my current institution). This work would not have been possible
without the members of my thesis dissertation committee (Ken Koedinger, Pat Langley,
Vincent Aleven, and John Anderson) who provided me with guidance and edited much of
the text that appears in this paper. Additionally, some excerpts of the text describing the
experimental design tutor was pulled from a workshop paper published in collaboration with
Erik Harpstead, Eliane Stampfer Wiese, Mengfan Zou, Noboru Matsuda, Vincent Aleven,
and Ken Koedinger (MacLellan et al., 2015). Lastly, this work would not have been possible
without Mengfan Zou, who built the first version of the experimental design tutor as part
of her undergraduate research experience with me. Thank you everyone for all the help you
provided.

References

Abbeel P, Ng AY (2004) Apprenticeship learning via inverse reinforcement
learning. In: Proceedings of the 21st international conference on Machine
learning, pp 1–8 2

Aleven V, McLaren BM, Sewall J, Koedinger KR (2006) The cognitive tu-
tor authoring tools (CTAT): Preliminary evaluation of efficiency gains. In:
Ikeda M, Ashley KD, Tak-Wai C (eds) Proceedings of the 8th International
Conference on Intelligent Tutoring Systems, Springer, pp 61–70 1, 4.2

Aleven V, McLaren BM, Sewall J, Koedinger KR (2009) A New Paradigm for
Intelligent Tutoring Systems: Example-Tracing Tutors. International Jour-
nal of Artificial Intelligence in Education 19:105–154 1, 3.1, 3.5, 4.2

Barnes T, Stamper JC, Lehmann L, Croy MJ (2008) A pilot study on logic
proof tutoring using hints generated from historical student data. In: Pro-
ceedings of the 1st International Conference on Educational Data Mining,
pp 197–201 1

Domain-General Tutor Authoring with Apprentice Learner Models 41

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software 67(1):1–48 4.3.1

Beal CR, Walles R, Arroyo I, Woolf BP (2007) On-line Tutoring for Math
Achievement Testing: A Controlled Evaluation. Journal of Interactive On-
line Learning 6:1–13 1

Bowen WG, Chingos MM, Lack KA, Nygren TI (2013) Interactive Learning
Online at Public Universities: Evidence from a Six-Campus Randomized
Trial. Journal of Policy Analysis and Management 33(1):94–111 (document)

Brazdil P (1978) Experimental Learning Model. In: Proceedings of the 1978
AISB/GI Conference on Artificial Intelligence, pp 46–50 2.1

Cen H (2009) Generalized Learning Factors Analysis: Improving Cognitive
Models with Machine Learning. PhD thesis, Carnegie Mellon University
4.3.1

Chen Z, Klahr D (1999) All Other Things Being Equal: Acquisition and Trans-
fer of the Control of Variables Strategy. Child Development 70(5):1098–1120
3.1, 3.2

Christel MG, Stevens SM, Maher BS, Brice S, Champer M, Jayapalan L, Chen
Q, Jin J, Hausmann D, Bastida N, Zhang X, Aleven V, Koedinger KR,
Chase C, Harpstead E, Lomas D (2012) RumbleBlocks: Teaching science
concepts to young children through a Unity game. In: Proceedings of the
17th International Conference on Computer Games: AI, Animation, Mobile,
Interactive Multimedia, Educational & Serious Games, pp 162–166 4.1

Clark RE, Feldon DF, van Merriënboer JJG, Yates K, Early S (2008) Cog-
nitive task analysis. In: Spector JM, Sosman MG, van Merriënboer MD,
Driscoll MP (eds) Handbook of Research on Educational Communications
and Technology, International Journal of Educational Research, Mahwah,
NJ, chap 8, pp 578–591 1

Collins A, Brown JS, Newman SE (1987) Cognitive apprenticeship: Teaching
the craft of reading, writing, and mathematics. Tech. Rep. 403, National
Institute of Education, Washington, DC 1

Dejong G, Mooney R (1986) Explanation-based learning: An alternative view.
Machine Learning 1:145–176 2.3

Dent L, Boticario J, McDermott JP, Mitchell TM (1992) A personal learning
apprentice. In: Proceedings of the 10th National Conference on Artificial
Intelligence, pp 96–103 2

Fikes RE, Hart P, Nilsson NJ (1972) Learning and Executing Generalized
Robot Plans. Artificial Intelligence 3:251–288 2.1

Fisher DH (1987) Knowledge Acquisition Via Incremental Conceptual Clus-
tering. Machine Learning 2:139–172 2.3

Gobert JD, Koedinger KR (2011) Using Model-Tracing to Conduct Perfor-
mance Assessment of Students’ Inquiry Skills within a Microworld. In: Pro-
ceedings of the meeting for the society for research on educational effective-
ness 3.4

Graesser AC, VanLehn K, Rose C, Jordan PW, Harter D (2001) Intelligent
Tutoring Systems with Conversational Dialogue. AI Magazine 22(4):39 1

42 Christopher J. MacLellan, Kenneth R. Koedinger

Harpstead E (2017) Projective replay analysis: a reflective approach for align-
ing educational games to their goals. PhD thesis, Carnegie Mellon University
5

Jarvis MP, Nuzzo-Jones G, Heffernan NT (2004) Applying Machine Learning
Techniques to Rule Generation in Intelligent Tutoring Systems. In: Proceed-
ings of the 7th International Conference on Intelligent Tutoring Systems, pp
541–553 1

Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement Learning: A
Survey. Journal of Artificial Intelligence Research 4:237–285 3.3

Koedinger KR, Anderson JR (1997) Intelligent Tutoring Goes To School in
the Big City. International Journal of Artificial Intelligence in Education
8:1–14 (document), 1

Koedinger KR, Baker RSJd, Cunningham K, Skogsholm A, Leber B, Stamper
J (2010) A Data Repository for the EDM community: The PSLC DataShop.
In: Romero C, Ventura S, Pechenizkiy M, Baker RSJd (eds) Handbook of
Educational Data Mining, CRC Press, Boca Raton 2.4, 4.1

Koedinger KR, Corbett AT, Perfetti C (2012) The Knowledge-Learning-
Instruction (KLI) framework: Toward bridging the science-practice chasm
to enhance robust student learning . Cognitive Science 36:757–798 1, 4, 4.3.1

Koedinger KR, Booth JL, Klahr D (2013) Instructional Complexity and the
Science to Constrain It. Science 342(6161):935–937 1

Kumar R, Roy ME, Roberts RB, Makhoul JI (2014) Towards automatically
building tutor models using multiple behavior demonstrations. In: Inter-
national Conference on Intelligent Tutoring Systems, Springer, pp 535–544
1

Langley P, Ohlsson S (1984) Automated cognitive modeling. In: Proceedings
of the 4th National Conference on Artificial Intelligence, pp 193–197 2

Lee HS, Betts S, Anderson JR (2015) Learning Problem-Solving Rules as
Search Through a Hypothesis Space. Cognitive Science 40(5):1036–1079 4.1,
4.1

Li N (2013) Integrating Representation Learning and Skill Learning in a
Human-Like Intelligent Agent. PhD thesis, Carnegie Mellon University 1,
4.3.1

Li N, Schreiber AJ, Cohen WW, Koedinger KR (2012) Efficient Complex
Skill Acquisition Through Representation Learning. Advances in Cognitive
Systems 2:149–166 2.4

Li N, Stampfer E, Cohen WW, Koedinger KR (2013) General and Efficient
Cognitive Model Discovery Using a Simulated Student. In: Knauff M, Paulen
M, Sebanz N, Wachsmuth I (eds) Proceedings of the 35th Annual Meeting
of the Cognitive Science Society 1

Li N, Matsuda N, Cohen WW, Koedinger KR (2014) Integrating representa-
tion learning and skill learning in a human-like intelligent agent. Artificial
Intelligence 219:67–91 1, 2, 2.1

MacLellan CJ, Koedinger KR, Matsuda N (2014) Authoring Tutors with Sim-
Student: An Evaluation of Efficiency and Model Quality. In: Trausen-Matu
S, Boyer K (eds) Proceedings of the 8th International Conference on Intel-

Domain-General Tutor Authoring with Apprentice Learner Models 43

ligent Tutoring Systems 3, 3.2, 3.3, 3.4, 3.5, 4.3.2, 12, 4.4
MacLellan CJ, Harpstead E, Wiese ES, Zou M (2015) Authoring Tutors with

Complex Solutions: A Comparative Analysis of Example Tracing and Sim-
Student. In: Workshops at the 17th International Conference on Artificial
Intelligence in Education, pp 35–44 1, 5

MacLellan CJ, Harpstead E, Aleven V, Koedinger KR (2016) TRESTLE: A
Model of Concept Formation in Structured Domains. Advances in Cognitive
Systems 4:131–150 2.3, 2.4, 4.1, 4.1

Matsuda N, Cohen WW, Koedinger KR (2014) Teaching the Teacher: Tutor-
ing SimStudent Leads to More Effective Cognitive Tutor Authoring. Interna-
tional Journal of Artificial Intelligence in Education 25(1):1–34 (document),
1, 3, 3.5

McDaniel RG, Myers BA (1999) Getting more out of programming-by-
demonstration. In: Proceedings of the human factors in computing systems
conference, pp 442–449 3.5

McLaren BM, Koedinger KR, Schneider M, Harrer A, Bollen L (2004) Boot-
strapping novice data: Semi-automated tutor authoring using student log
files. In: Proceedings of the Workshop on Analyzing Student-Tutor Interac-
tion Logs to Improve Educational Outcomes, Seventh International Confer-
ence on Intelligent Tutoring Systems 1

McLaren BM, Lim SJ, Gagnon F, Yaron D, Koedinger KR (2006) Studying
the Effects of Personalized Language and Worked Examples in the Context
of a Web-Based Intelligent Tutor. In: Proceedings of the 8th International
Conference on Intelligent Tutoring Systems, pp 318–328 4.1, 4.1

Mitrovic A, Martin B, Mayo M (2002) Using evaluation to shape ITS design:
Results and experiences with SQL-Tutor. User Modeling and User-Adapted
Interaction 12(2-3):243–279 1

Murray T (1999) Authoring Intelligent Tutoring Systems: An analysis of the
state of the art. International Journal of Artificial Intelligence in Education
10:98–129 (document), 1

Murray T (2003) An Overview of Intelligent Tutoring System Authoring Tools:
Updated analysis of the state of the art. In: Murray, Ainsworth, Bless-
ing (eds) Authoring tools for advanced technology learning environments,
Kluwer Academic Publishers, Netherlands, pp 493–546 (document), 1

Murray T (2005) Having It All, Maybe: Design Tradeoffs in ITS Authoring
Tools. In: Proceedings of the 3rd International Conference on Intelligent
Tutoring Systems, Springer, Berlin, Heidelberg, pp 93–101 1

Myers B, Hudson SE, Pausch R (2000) Past, present, and future of user in-
terface software tools. ACM Transactions on Computer-Human Interaction
7:3–28 3.1, 3.5

Nathan M, Koedinger KR, Alibali M (2001) Expert Blind Spot: When Content
Knowledge Eclipses Pedagogical Content Knowledge. In: Proceedings of 3rd
International Conference on Cognitive Science, pp 644–648 1

Ohlsson S (2011) Deep Learning. How the Mind Overrides Experience, Cam-
bridge University Press, New York 2

44 Christopher J. MacLellan, Kenneth R. Koedinger

Pane JF, Griffin BA, McCaffrey DF, Karam R (2013) Effectiveness of Cogni-
tive Tutor Algebra I at Scale. Tech. Rep. WR-984-DEIES, RAND Corpora-
tion, Santa Monica (document)

Patel R, Liu R, Koedinger KR (2016) When to Block versus Interleave Prac-
tice? Evidence Against Teaching Fraction Addition before Fraction Multipli-
cation. In: Proceedings of the 38th Annual Meeting of the Cognitive Science
Society 4.1, 4.1

Pavlik PI, Bolster T, Wu Sm, Koedinger K, MacWhinney B (2008) Using
Optimally Selected Drill Practice to Train Basic Facts. In: Proceedings of
the 12th International Conference on Intelligent Tutoring Systems, pp 593–
602 4.1, 4.1

Pavlik PI, Kelly C, Maass JK (2016) The Mobile Fact and Concept Training
System (MoFaCTS). In: Proceedings of the 12th International Conference
on Intelligent Tutoring Systems, pp 247–253 4.2

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blon-
del M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cour-
napeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12:2825–2830
2.3, 2.4

Quinlan JR (1986) Induction of decision trees. Machine Learning 1:81–106 2.4
Ritter S, Anderson JR, Koedinger KR, Corbett AT (2007) Cognitive Tutor:

Applied research in mathematics education. Psychonomic Bulletin & Review
14(2):249–255 1, 2.4, 4.1, 4.1

Sao Pedro MA, Gobert JD, Heffernan NT, Beck JE (2009) Comparing Peda-
gogical Approaches for Teaching the Control of Variables Strategy. In: Taat-
gen N, van Rijn H (eds) Proceedings of the 31st Annual Conference of the
Cognitive Science Society, pp 1–6 3.1

Schneider M, Rittle-Johnson B, Star JR (2011) Relations among conceptual
knowledge, procedural knowledge, and procedural flexibility in two samples
differing in prior knowledge. Developmental Psychology 47(6):1525–1538 3.4

Sottilare RA, Holden HK (2013) Motivations for a Generalized Intelligent
Framework for Tutoring (GIFT) for Authoring, Instruction, and Analysis.
In: Sottilare RA, Holden HK (eds) AIED 2013 Workshop on Recommen-
dations for Authoring, Instructional Strategies and Analysis for Intelligent
Tutoring Systems (ITS): Towards the Development of a Generalized Intel-
ligent Framework for Tutoring (GIFT), pp 1–150 1

Tenison C, MacLellan CJ (2014) Modeling Strategy Use in an Intelligent Tu-
toring System: Implications for Strategic Flexibility. In: Proceedings of the
12th International Conference on Intelligent Tutoring Systems, pp 466–475
3.4, 3.5

Ur S, VanLehn K (1995) Steps: A Simulated, Tutorable Physics Student. Jour-
nal of Artificial Intelligence in Education 6:405–437 2, 2.1

VanLehn K (2011) The Relative Effectiveness of Human Tutoring, Intelligent
Tutoring Systems, and Other Tutoring Systems. Educational Psychologist
46(4):197–221 1

Domain-General Tutor Authoring with Apprentice Learner Models 45

VanLehn K, Jones RM, Chi MTH (1991) Modeling the self-explanation effect
with Cascade 3. In: Proceedings of the human factors in computing systems
conference, pp 132–137 2, 2.1

VanLehn K, Ohlsson S, Nason R (1994) Applications of simulated students:
An exploration. Journal of Interactive Learning Research 5:135–175 1

Waalkens M, Aleven V, Taatgen N (2013) Does supporting multiple student
strategies lead to greater learning and motivation? Investigating a source of
complexity in the architecture of intelligent tutoring systems. Computers &
Education 60:159–171 3.4

Weitekamp D, Harpstead E, Koedinger KR (2020) An interaction design for
machine teaching to develop ai tutors. In: Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, pp 1–11 4.2

Wylie R, Koedinger KR, Mitamura T (2009) Is self-explanation always better?
The effects of adding self-explanation prompts to an English grammar tutor.
In: Proceedings of The 31st Annual Conference of Cognitive Science Society,
pp 1300–1305 4.1, 4.1

	1 Introduction
	2 The Apprentice Learner Architecture
	3 An Initial Case Study in Expert Models Authoring
	4 Authoring Expert Models Across Domains
	5 Conclusions and Future Work

