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ABSTRACT

There has been great progress towards Reinforcement Learn-
ing (RL) approaches that can achieve expert performance
across a wide range of domains. However, researchers have
not yet applied these models to learn expert models for ed-
ucationally relevant tasks, such as those taught within tu-
toring systems and educational games. In this paper we
explore the use of Proximal Policy Optimization (PPO) [25]
for learning expert models for tutoring system tasks. We
explore two alternative state and action space representa-
tions for this RL approach in the context of two intelligent
tutors (a fraction arithmetic tutor and a multicolumn addi-
tion tutor). We compare the performance of these models to
a computational model of learning built using the Appren-
tice Learner architecture. To evaluate these models, we look
at whether they achieve mastery and how many training op-
portunities they take to do so. Our analysis shows that at
least one PPO model is able to successfully achieve mas-
tery within both tutors, suggesting that RL models might
be successfully applied to learn expert models for educa-
tionally relevant tasks. We find that the Apprentice model
also achieves mastery, but requires substantially less train-
ing (thousands of times less examples) than PPO. Finally,
we find that there is an interaction between the PPO rep-
resentation and task (one representation is better for one
tutor and the other representation is better for the other
tutor), suggesting that the design of the state and action
representations for RL is important for success. Our work
showcases the promise of RL for expert model discovery in
educationally relevant tasks and highlights limitations and
challenges that need further research to overcome.

Keywords
Reinforcement Learning, Simulated Students, Expert Model
Authoring

1. INTRODUCTION

Adit Gupta
College of Computing and Informatics
Drexel University
Philadelphia, PA 19104

ag3338@drexel.edu

Researchers have made great progress towards developing
Reinforcement Learning (RL) models that can meet or ex-
ceed human skill at complex tasks across a broad range of
domains. For example, the recently developed Proximal Pol-
icy Optimization (PPO) algorithm [25| can learn to play a
broad range of Atari games at an expert level through trial
and error. A team of five PPO-trained models can beat a
team of five human professional champions at DOTA2, a
collaborative online multiplayer battle arena game [4]. Re-
searchers have applied a related RL approach called A3C
|19] to develop agents that can beat top human experts at
Starcraft2, a multiplayer real-time strategy game [28]. Fi-
nally, RL has been applied widely to the area of robotics
and autonomous systems; e.g., RL models can fly an F16 to
beat a expert human pilots in simulated 1v1 dogfights [7].

Despite these successes, there has been surprisingly little
work exploring the applicability of RL to educationally rel-
evant tasks, such as those found in K12 or higher educa-
tion. We do not mean that RL has not been applied to sup-
port learning and education; in fact, there is a large amount
of work exploring how RL can be applied to optimize stu-
dents instructional sequences [|9]. However, we assert that
there has been very little exploration of how emerging RL
approaches perform on the kinds of educationally relevant
tasks that humans often engage in; e.g., learning math.

Given this gap we might ask, what are the benefits of ap-
plying RL to educationally relevant tasks? The recent work
on computational models of learning highlights many pos-
sible benefits. First, machine learning agents can support
researchers and instructional designers in authoring cogni-
tive models |17} [30] and discovering knowledge component
models [14] that can drive personalized learning technolo-
gies. Although RL models utilize different representations
than more traditional expert-system models (e.g., statistical
representations), learned models do still represent an expert
modelE] Thus, tutors might apply these models to provide
feedback on student behaviors. Researchers and designers
might also use machine learning agents to cognitively crash
test instruction before more costly human trials |16, |15} |31].

Given these benefits, why has more work not explored the
use of recent RL methods for these tasks? One possibility is
that applying RL to educational tasks is not straightforward.
There exist toolkits, like GymAI [5], MuJoCoEnv [23], and
PyBullets [6], for interfacing RL algorithms with simulation

! An expert model maps states to correct next action(s).



environments and games platforms like Atari, StarCraft2,
and DOTA2. These toolkits have powered the explosion of
RL research. Unfortunately, no such interfaces exist for ed-
ucational tasks, such as those found in intelligent tutoring
systems or educational games. Also, many educational tasks
do not fit cleanly into the standard RL paradigm of observ-
ing the state, choosing an action, receiving a reward, and
repeating; e.g., many tutors let learners request hints and
worked examples, which RL systems cannot leverage

Beyond these challenges, it is possible that the tasks them-
selves are less attractive for RL research. For example,
educationally relevant tasks, such as fraction arithmetic,
seem simple when compared to tasks such as flying an F16
or playing DOTA2. It is possible that these tasks do not
challenge current RL systems. However, it is also possible
that these tasks present challenges that have prevented re-
searchers from successfully applying RL to them. For exam-
ple, tutor tasks often have much larger action spaces than
game-based tasks where RL has been successfully applied
(e.g., actions for inputting the numbers 1-50 in any inter-
face field vs. six buttons on an Atari controller).

In this paper, we set out to investigate these ideas and to
lay a foundation for future research programs to apply RL to
the kinds of educationally relevant tasks that humans regu-
larly engage with. Our goal is not to show that RL provides
a good model of human learning and behavior (we do not
think that it does). Instead, we simply aim to show how RL
methods might be applied to tasks relevant to human learn-
ing. Our hope is that RL approaches might offer new means
for authoring and evaluating educational technologies.

To support these investigations we present TutorGym, an
open-source toolkit for interfacing RL agents (as well as
other kinds of machine learning agents) with intelligent tu-
toring system tasks. This toolkit lets us apply RL models
to two educational environments: a fraction arithmetic tu-
tor and a multicolumn addition tutor. We developed two
PPO models that vary in their features and action repre-
sentations. We also compared these models to a previously
developed Apprentice Learner model [16], which is a more
cognitively inspired model of how people learn from exam-
ples and feedback within intelligent tutors. We conducted a
factorial study design where we applied these three models
to our two educational tasks. Our key findings are:

1. The PPO models are able to achieve mastery at these
tasks, suggesting that they do generalize from games
and robotics tasks to educationally relevant tasks;

2. The PPO models require much more training than our
Apprentice Learner model to achieve mastery (thou-
sands of times more training), even when we provide
PPO with the same background knowledge as Appren-
tice (the PPO-Operator variant). This suggests that
human-like models, such as Apprentice, are more effi-
cient than PPO.

3. We find that there is an interaction between PPO’s
representation and the task, suggesting that represen-
tation is central to RL performance and that it needs
to be tailored for each task.

’Inverse RL [1] can learn from expert examples, but typi-
cally this is done offline in batch rather than interactively
interleaved with RL.

We claim that there is an synergistic opportunity to do re-
search at the intersection of RL and education that has not
yet been fully explored and this paper aims to lay the foun-
dation for these future explorations. There are many poten-
tial ways that educational data mining and learning analytic
communities might benefit from the development and use of
RL models, such as PPO. Similarly, there is an opportunity
to improve RL by exploring its application to the kinds of
educationally relevant learning tasks that humans engage in
during K12 and higher education.

2. BACKGROUND
2.1 OpenAl Gym

OpenAl Gym is an open-source toolkit for RL development
[5]. Gym provides an standardized interface for applying RL
to tasks. An environment created with Gym has standard-
ized state and action descriptions and supports methods,
for querying the state, taking an action, and collecting re-
wards. Gym currently supports multiple environments such
as robot simulations or Atari games. Our research builds on
Gym, so that we can directly interface existing RL imple-
mentations with educationally relevant tasks without having
to create custom implementations.

2.2 Proximal Policy Optimization (PPO)

PPO is a deep RL algorithm that was recently developed by
OpenAl [25]. It is a policy gradient method that achieves
state-of-the-art performance across many tasks. We chose
PPO over alternatives, such as TRPO [24] and ACER |29,
because it supports a broad range of state and action rep-
resentations and is much easier to tune than alternatives.
For this work, we use the stable-baselines3 implementation
of the PPO algorithm, which has verified performance on
multiple RL benchmarks [22].

2.3 Apprentice Learner Architecture

The open-source Apprentice Learner Architecture [16] gen-
eralizes prior simulated student models [13][18] and provides
a platform for investigating and comparing alternative sim-
ulated student models. Apprentice models have been suc-
cessfully applied to learn expert models for 8 different tutor
tasks spanning multiple domains (math, language, chem-
istry, and engineering) [17]. Emerging work explores the use
of Apprentice models for supporting domain experts, such as
teachers, in authoring tutors through teaching rather than
programming [30]. In this work, we use one of the stan-
dard Apprentice models as a baseline for evaluating the PPO
models because it have been successfully applied in previous
work to learn expert models for educationally relevant tasks.
For a complete description of this model see [17].

3. TUTORGYM

To support the development of machine learning agents we
created TutorGym, a toolkit that provides a machine inter-
faces for multiple tutor environmentsEl TutorGym leverages
the Gym [5] to enable existing RL implementations (that
support Gym) to interface with these environments.

Our toolkit extends Gym to enable agents to request worked
examples. Tutors generate both next-step hints and feed-
back, so the examples are automatically generated by the

3We have open-sourced TutorGym under an MIT license
and made it publicly available here: https://tutorgym.ai
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Figure 1: Fractions tutor, as rendered within TutorGym with
its underlying base feature representation.

underlying tutor. As RL models only learn from feedback on
actions, these interactions are mainly used by the Appren-
tice models, which learn from both examples and feedback.

TutorGym logs agent interactions in DataShop format [12],
which is a common educational data format. Outputting
data in this format lets us analyze it using the same tech-
niques used to analyze human tutor data. In particular, it
lets us conduct learning curve analysis to investigate agents’
first attempt correctness as they receive more practice.

We implemented two tutors within TutorGym: a fraction
arithmetic tutor [21] and a multicolumn addition tutor [30].
We chose these tutors because they exhibit interesting state
and action spaces characteristics that are relevant to our
analysis of emerging RL approaches.

3.1 Fraction Arithmetic Tutor

This tutor was used to study both human [21] and agent [16]
learning. It presents students with three kinds of fractions
problems: addition with the same denominator, addition
with different denominators, and multiplication. The stu-
dents check a box indicating whether they need to convert
to common denominators before solving. If the fractions
need to be converted, then they input values into the con-
version fields. The tutor requires students to convert frac-
tions to common denominators using cross multiplication.
If students do not need to convert, then they directly en-
ter values into the final fraction fields. Figure [I] shows the
visual representation of the tutor state generated by Tutor-
Gym along with the underlying attribute-value representa-
tion that it maintains internally. The tutor gives students
randomly generated problems where the initial numerators
range from 1-15, the initial denominators range from 2-15,
and the type of problem can be either addition or multipli-
cation. There is also an “easy” version of the tutor that gen-
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Figure 2: Multicolumn tutor, as rendered within TutorGym
with its underlying base feature representation.

erates a much smaller range of numbers (numerators range
from 1-5 and denominators range from 2-5). The tutoring
system also has a done button (not shown) that the agent
can select and it can provide worked examples on request.

3.2 Multicolumn Addition Tutor

The second tutor was used in previous research on simulated
students [30]. It presents students with two numbers to add,
with each digit presented in its own field. To compute the
solution, the students needs to add and carry values where
necessary. The tutor requires students to enter the answer
values right to left, carrying where necessary. The tutor will
mark an answer incorrect if they have not yet filled in the
answer field to the right or they have not yet carried over
a value from the previous column (if required). Figure
shows a simple visual output created by TutorGym along
with the underlying attribute-value representation. The tu-
tor also has a done button (not shown) and can provide
worked example on demand.

4. LEARNING MODELS

4.1 Apprentice Learner

We created three alternative learning models to train within
the TutorGym tutors. We built our first model using the
Apprentice Learner architecture |16} [30]. From this archi-
tecture, we used the an Apprentice model developed in prior
work [17]. For each tutor, we provided the apprentice model
with background relational knowledge (for augmenting the
state description) and primitive operators (for explaining
demonstrations). For the fractions tutor, we provided equal-
ity knowledge, which adds features to the state description
for each pair of fields denoting whether they have equal val-
ues. We also provided three primitive operators: copy, add,
and multiply, which give the agent the ability to copy, add,
and multiply values from the interface.



For the multicolumn tutor, the knowledge was slightly more
complicated. We added four relational knowledge operators:
add2-ones, add2-tens, add3-ones, and add3-tens. The first
two add the values from every pair of fields in the interface
and add features to the state denoting the ones component
and tens component of each sum. Add3-ones and add3-tens
do the same, but for every triplet of fields. This provides the
agent with the ability to determine if a column of numbers
(either of length two or three) will generate a value that
needs to be carried or not. We also added these exact same
operators as primitive operators, so the agent can use them
to explain and perform the actual steps of computing each
column sums and generating the appropriate carry values.

4.2 PPO-Number

A PPO model is defined in terms of its state (input) and
action (output) representations. For the fractions and mul-
ticolumn tutors, the PPO-Number model makes use of the
base state-representations shown in Figures[TJand[2] To con-
vert these representations into a format that is acceptable
to PPO (a fixed-length feature vector), we used an approach
called one-hot encoding. Under this scheme, every unique
attribute-value pair from the state is mapped to a particular
feature in a feature vector. If the attribute-value is present
in the state, then the feature is a 1, otherwise it is a 0.

Unfortunately, precomputing all possible attribute-values is
non-trivial. To address this issue, we created an online
one-hot encoder that always outputs a vector with a fixed
length preselected by the user. Whenever the encoder en-
counters a new attribute-value, it maps it to a previously
unused feature within the vector. After a mapping between
an attribute-value and a feature has been made, that fea-
ture is only ever used to represent that particular attribute-
value. This scheme enables the use of RL approaches that
expect fixed-length vectors (PPO) even though the system
might encounter a large number of sparse features that are
not known in advance. The end result is that states from
the fraction and multicolumn tutors are mapped to fixed
length feature vectors, where every feature is either a 0 or a
1 (e.g., the initial state from Figure [2[ would have a feature
for upper_tens = 7 with a value of 1). For the fractions
tutor, 2000 features was sufficient to describe states in the
standard tutor and 900 features was sufficient to describe
the states in the easy tutor (with a smaller set of problems).
For the multicolumn tutor, 110 features were sufficient.

Given this state representation, PPO-Number utilizes a mul-
tidiscrete output. This type of output has multiple indepen-
dent discrete action outputs; e.g., in Atari it might have an
output for the arrow pad (left, right, up, down) and an-
other output for the action action buttons (A, B, or None).
PPO-Number also has two outputs: one that outputs a field
to enter a value into (e.g., answer_num) and a second that
outputs a number to enter into that field (e.g., 1).

For the fractions tutor, there are eight fields that can be
selected for input and there are 450 possible numbers that
can be entered into one of these fields (1-450). For the easy
version of the tutor, there are only 50 possible numbers (1-
50). Taken together, this means that the standard tutor has
3,600 unique actions (8 x 450 = 3600) and the easy tutor has
400 unique actions (8 x 50 = 400). There are slightly less
actions in practice because outputs are ignored in certain

cases; if the system selects the done or the check convert
fields, than the number component is ignored.

For the multicolumn tutor, there are also eight possible fields
that can be selected. Each field represents a single digit,
so there are only 10 numbers that can be input into each
field (0-9). This yields a total action space of 80 actions
(8 x 10 = 80). Similar to fractions, the total is slightly less
in practice because the number component of the output is
ignored when the done button is selected.

4.3 PPO-Operator

This model uses a different state and action representation
from PPO-Number. The representation aims to mirror the
representation used by the Apprentice model. We apply
the relational knowledge used by Apprentice to augment the
base state representation from each tutor. In the fractions
tutor, we apply the equality relation to add an additional
feature describing which pairs of fields are equal. For the
multicolumn tutor, we apply the add2-one, add2-tens, add3-
ones, and add3-tens relations to compute the ones and tens
values for the sums of every unique pair and triple of values
from the tutor fields. We applied the same one-hot encoding
approach used for PPO-Number to convert attribute-values
into fixed-length feature vectors. We increased the size of
the feature vectors to support the combinatorial number of
additional relational features (2000 for fractions and 5000
for multicolumn).

The action space is multidiscrete, but the number and type
of outputs are slightly different from PPO-Number. For the
fractions tutor, the model has four outputs. The first is
similar to PPO-Number’s selection output, it identifies the
field to update with a result. There are eight possible fields
that might be updated by an action. The second output
corresponds to an operator to apply. The operators are the
same as those available to Apprentice: copy, add, or multi-
ply. The remaining two outputs correspond to fields in the
interface that provide the two argument for each operator
and there are ten possible fields that can be used for either of
these arguments. Using this scheme, an agent might choose
to update the answer_num field using the add operator, and
it might provide the initial num_left and initial num_right
as arguments. There are 2400 possible unique actions under
this representation (8 x 3 x 10 x 10 = 2400). However, this
number is smaller in practice. If the model chooses to update
the done or check_convert fields than the reset of the action
outputs are ignored. Additionally, if the model chooses to
use the copy operator, than only the first argument is used
(the second is ignored).

For the multicolumn tutor there are five outputs instead
of four. The first corresponds to a field to update (there
are eight possible fields). The second corresponds to the
operator to apply. There are five operators corresponding to
those used by Apprentice: copy, add2-tens, add2-ones, add3-
tens, add3-ones. Finally, there are three argument fields
because some of the operators (add3-tens and add3-ones)
take three arguments. There are 13 possible options for
each argument. With these outputs, there are 87,880 unique
actions (8 x5x13x13x 13 = 87880). In practice this number
is much smaller because if the done field is updated, then all
the other outputs are ignored. Similarly if the copy operator
is selected, than only the first argument is used (second and



Model | Domain | # Inputs | # Discrete Outputs
Number Fractions 2000 8, 450
Number | Fractions-Easy 900 8, 50
Number Multicolumn 110 8, 10
Operator Fractions 2000 8, 3, 10, 10
Operator | Multicolumn 5000 8, 5,13, 13, 13

Table 1: Size of PPO model input/output for each task.

third arguments are ignored). Finally, if the add2-tens or
add2-ones operator are selected, than the third argument is
ignored. Table[I]shows a summary of the number of inputs
and outputs for each model and tutor.

5. SIMULATION STUDY
5.1 Tuning and Training Models

We conducted a simulation study with a factorial design,
where every agent (Apprentice, PPO-Number, and PPO-
Operator) was trained in each environments (fractions and
multicolumn). The hyperparameters used by PPO greatly
affect its performance and they must be tuned inde-
pendently for each model and task. We used Optuna, an
open-source hyperparameter optimization framework to au-
tomate hyperparameter search . Using Optuna, we ran
approximately 100 iterations of hyperparameter tuning for
each PPO model and task pair. Tuning one model for one
task took approximately 38 hours. The Apprentice model
does not have any hyperparameters that need to be tuned.

We trained each model in each environment using the best
hyperparameters. We trained Apprentice on 500 fractions
problems and 5000 multicolumn problems. These amounts
provided enough practice to reach mastery while minimizing
unnecessary computation. We trained each PPO model for
1 million steps, which translates into a varying number of
problems depending on the amount of incorrect steps. To
analyze the simulation logs, we assigned knowledge compo-
nent labels to each field for each problem type (e.g., answer
one’s place for multicolumn), computed the first-attempt

1.05-
1.00-
0.85-
0.80-
0.85=
0.80-
0.75-
0.70-
0.65-
0.60=
0.55-
0.50-
0.45-
0.40-
0.35=
0.30-
0.25-
0.20-
0.15-
0.10-
0.05-
0.00-

-0.05- ' ' ' ' '
o 1 2 4 3

3
log10(Opportunity..field.)

Madel
AL
== PPO-Mumber-Easy
=== PFO-Operator

error

Figure 3: Fraction arithmetic learning curves.

correctness on each knowledge components for each prob-
lem, and plotted this correctness on a log scale with values
smoothed using binomial Gaussian additive smoothing (to
account for the 0/1 nature of the correctness values).

5.2 Results

See Appendix [A] for the results of hyperparameter tuning.
During tuning, we were unable to get PPO-Number to con-
verge to a correct model in the fractions tutor. We hy-
pothesized this was due to the large number of actions for
this model/task. To test this hypothesis, we trained PPO-
Number on the easy fractions tutor, which has substantially
less actions. PPO-Number converged to correct behavior on
this tutor, supporting our hypothesis.

Figures [3] and [4] shows the learning curves for the different
models in the two tutor environments. We find that Ap-
prentice converges to mastery after 10 opportunities for each
knowledge component in the fractions tutor and 125 in the
multicolumn tutor. In contrast, PPO-Number requires over
10,000 opportunities to reach mastery on the easy fractions
tutor and over 10,000 practice opportunities to reach mas-
tery in the multicolumn tutor. PPO-Operator requires less
opportunities (3,000) within the fractions tutor , but never
quite reaches mastery within the multicolumn tutor, even
after 10,000 opportunities. Even though both PPO-Number
and PPO-Operator receive the amount of training steps (1
million), PPO-Operator makes more mistakes per problem
and receives less problems as a result.

5.3 Discussion

At least one PPO model was able to achieve mastery in each
tutor. PPO-Operator achieved mastery in the fractions tu-
tor and PPO-Number achieved mastery in the multicolumn
tutor. This suggests that PPO can generalize from game
and robotics tasks to tutor tasks. However, the finding that
no single representation is best suggests that the represen-
tations must be customized for each task.

PPO-Number was unable to master the standard fractions
tutor. We suspect this is due to the single output channel
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with 450 actions. Based on our experience, model perfor-
mance degrades when the number of actions on one of the
multidiscrete outputs gets large. Future work should ex-
plore replacing the 450 action output with three outputs: a
hundreds digit output (0-4) a tens digit output (0-9) and a
ones digit output (0-9). We also found that PPO-Operator
was unable to achieve mastery in the multicolumn tutor.
It may achieve mastery with more training (e.g., 1.5 mil-
lion training steps rather 1 million). Assuming this is true,
then PPO-Operator, which uses the same relational and op-
erator knowledge as Apprentice seems to be more generally
applicable than PPO-Number. Apprentice achieves mastery
in both tasks with substantially less practice (thousands of
times less), suggesting Apprentice has more efficient learn-
ing. Apprentice models have been shown to have similar
learning curves to human students |16] for the fractions tu-
tor. This implies that PPO models require substantially
more training than human learners.

One limitation of the current study is that PPO may be more
efficient when trained with multiple simultaneous environ-
ments (e.g., 8 tutors in parallel). Parallel training provides
more diversity and improves learning. We tested this idea
by training PPO models on 8 parallel environments for both
the fractions and multicolumn tutors. We found that paral-
lel PPO required an equivalent amount of practice to achieve
mastery as non-parallel PPO; however, parallel PPO took
less total wall time to train (e.g., 12 instead of 48 hours).
Future work should explore the benefits and trade-offs of
parallel training. Also, PPO is an on-policy RL approach,
as opposed to an off-policy approach like Deep Q-Networks
(DQN) [20]. As such, PPO only trains on the data that is
immediately sampled from the environment; it discards old
training data because it will cause the model to diverge. In
contrast, DQN saves all experiences and continues to train
on them over the course of learning. We would have liked to
compare PPO to DQN, but DQN does not support multi-
discrete action outputs, so could not be evaluated using the
current Number and Operator representations. Future work
should explore modifications of DQN (or other off-policy
models) to see how they perform on these tasks.

6. RELATED WORK

There has been substantial work exploring the use of RL to
optimally sequencing students’ practice |9]. Unfortunately,
this approach requires a large amount of data. One solu-
tion is to train models using simulated student data. How-
ever, simulated student models are often simplistic and not
representative of real student behavior [8]. As a result, se-
quencing models built from synthetic data typically perform
poorly with human students. The RL models we propose
might serve as better simulated student models. Adopting
a rational analysis perspective |3} [11], we hypothesize that
agents that face the same task and processing constraints as
humans will have similar behavior; i.e., sequencing models
that are best for agents should be best for humans. However,
future work is needed to investigate this hypothesis.

A similar parallel hypothesis is that when the task and pro-
cessing constraints between RL and humans differ, the their
behavior is likely to differ. To investigate this idea, Stamper
et al. [26] explore differences in human vs. RL expertise for
two games: Connect Four and Space Invaders. We view our

work as complementary to this research, and future work
should compare the behavior of expert models learned in
this work to the behavior of human experts.

Simulated students have been used for a wide range of appli-
cations including theory testing [16], expert model authoring
|17, 130], and teachable agents [18]. However, we are unaware
of previously developed simulated students that make use of
RL. Some of this prior work aims to model human learn-
ing and behavior. In contrast, this work makes little effort
to model humans. We view this as a shortcoming of our
current study, due to its preliminary nature. Future work
should explore how RL approaches, such as those explored
here, might be integrated within human-like simulated stu-
dent models, such as Apprentice.

7. FUTURE WORK

TutorGym and our initial PPO models lay the foundation
for a number of novel research directions. One promising
directions we hope to explore concerns the use of RL to dis-
cover buggy student knowledge. During learning, RL agents
make many mistakes. We should explore how these mistakes
relate to the kinds of mistakes that humans make. VanLehn
[27] investigated the “mind bugs” that human students ex-
hibit in multicolumn arithmetic. Future work should explore
how RL bugs compare to human bugs and if RL can support
the discovery of bug knowledge for tutor tasks.

8. CONCLUSIONS

We explore the application of the PPO—an emerging RL
approach—to educationally relevant tasks. While RL has
been successfully applied to learn expert models across many
tasks and domains, it has not yet been applied in the con-
text of educationally relevant tasks. To support this explo-
ration, we created TutorGym, a toolkit for interfacing RL
models with educational training environments. We created
two tutor-based environments within TutorGym: a fraction
arithmetic tutor and a multicolumn addition tutor.

We created two PPO models that differ in their state and
action representations (PPO-Number and PPO-Operator).
For comparison purposes, we created a simulated student
model using the Apprentice Architecture that has a similar
state and action representation to the PPO-Operator model,
but uses different (non-RL) learning mechanisms that are
specifically designed to model human learning. We con-
ducted a factorial study that varied the model and task.
We found that at least one PPO model is able to achieve
mastery within each tutor, suggesting that PPO is appli-
cable to educationally relevant tasks. Despite this success,
we found that both PPO models require substantially more
training to reach mastery than Apprentice. This suggests
that educationally relevant tasks present an interesting use
case for the study and advancement of RL research. We also
found an interaction between the type of PPO model and the
task (PPO-Operator is best for fractions, but PPO-Number
is best for multicolumn). This suggests that PPO’s repre-
sentation affects its performance and must be customized
specifically for each task.

This work lays the foundation for future research to study
and develop RL approaches for educationally relevant tasks.
Our hope is that TutorGym and our initial models enable
new research into how RL can support human education.
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PPO-Number | PPO-Operator | PPO-Number | PPO-Operator
Fractions-Easy Fractions Multicolumn Multicolumn
n_steps 1024 256 32 128
batch_size 512 32 32 64
gamma 0.0 0.0 0.0 0.0
learning_rate 4.75e-3 4.56e-5 1.43e-3 7.13e-4
Ir_schedule constant constant linear constant
entropy_coef 6.27e-3 3.28e-2 4.21e-2 2.91e-3
clip_range 0.2 0.1 0.2 0.4
n_epochs 1 10 5 1
gae_lambda 0.98 0.99 0.92 1.0
max_grad_norm 0.8 0.5 0.7 0.3
vf_coef 0.915 0.240 0.401 0.568
net_arch small tiny medium small
shared_arch False True False True
activation_fn tanh tanh relu tanh

Table 2: PPO hyperparameters identified using hyperparameter optimization.

APPENDIX
A. HYPERPARAMETER TUNING

For each tuning trial, Optuna selects hyperparameter from
a prior sampling distribution, trains the model using these
values, and measures the resulting performance. Within a
trial, the PPO model is trained for 350,000 steps. The fi-
nal model performance is used to update the hyperparam-
eter sampling distribution, so subsequent iterations sample
more promising hyperparameters. Optuna also implements
a sample pruner, which detects PPO trials that are under
performing (e.g., if PPO performance gets worse with train-
ing rather than better) and prunes these samples early.

Table [2] shows the hyperparameters that were identified by
Optuna for each PPO model and domain. The hyperparam-
eter values are not particularly interpretable, but we report
them here so other researchers can replicate our results. It
is worth noting that we manually fixed the gamma value at
0.0, since tutoring systems provide immediate reward and
future rewards do not need to be factored into decision mak-
ing. Additionally, the tiny net architecture used a neural
network with two layers and 32 nodes per layer, the small
network used 64 nodes per layer and the medium network
used 128 nodes. If the architecture was shared, then the sec-
ond layer of the network was shared by both the value and
the policy head of the network. However, if they were not
shared then there were separate second layers for the value
and policy heads. Finally, a constant Ir_schedule means that
the learning rate is held constant over the course of train-
ing, whereas a linear schedule means that learning rate is
decreased linearly towards 0 over the course of training.
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