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Abstract 
Researchers have developed cognitive systems capable of hu-
man-level performance at complex tasks (e.g., Watson and 
AlphaGo), but constructing these systems required substan-
tial time and expertise. To address this challenge, a new line 
of research has begun to coalesce around the concept of cog-
nitive systems that users can teach rather than program.  A 
key goal of this research is to develop natural approaches for 
end users to directly train these systems to perform new tasks. 
However, what makes training interactions natural remains 
an open research question that we begin to explore in this pa-
per. To lay the foundation for this exploration, we review the 
human-computer interaction literature to identify character-
istics of systems that have historically been natural for end 
users to interact with. Based on this review, we propose a 
framework for cognitive system training interactions that de-
composes interaction into patterns, types, and modalities, all 
of which support the acquisition of different kinds of 
knowledge. Finally, we discuss how this framework charac-
terizes existing research within this space and how it can 
guide future research.  

Introduction    
In recent years, there has been a growth of research and de-
velopment in the area of cognitive systems, or systems ca-
pable of higher-level processing and reasoning with struc-
tured representations using techniques informed by cogni-
tive science (Langley, 2012). For example, IBM's Watson 
and Google's AlphaGo systems have demonstrated that it is 
possible for cognitive systems to achieve human-level per-
formance at complex tasks. However, cognitive systems still 
remain largely out of reach for the general public (Laird et 
al., 2017). A major factor contributing to this disconnect is 
that our daily lives are filled with a wide range of tasks 
across multiple domains, whereas today's state-of-the-art 
cognitive systems are implemented to perform specific tasks 
in specific domains. Extending specialized cognitive sys-
tems to support a wider range of tasks requires substantial 
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time and expertise (e.g., the base IBM Watson system that 
famously beat two Jeopardy! champions required over a 
century of AI expert development time). 

To address this challenge, cognitive systems researchers 
have begun exploring approaches for users to create and ex-
tend the capabilities of cognitive systems by teaching them, 
rather than by programming them. This emerging area of re-
search, which has been referred to as Interactive Task Learn-
ing (Kirk & Laird, 2014; Laird et al., 2017) and Apprentice 
Learning (MacLellan, 2017; MacLellan, Harpstead, Patel, & 
Koedinger, 2016), aims to develop the computational and 
cognitive theory needed for building systems that support 
natural interactions and that possess general capabilities for 
learning across a wide range of domains and contexts. Sim-
ilar to how research and development on computing hard-
ware enabled the transition from corporate mainframes to 
personal computers, this research area aims to support the 
transition from monolithic cognitive systems (e.g., Watson) 
to personal cognitive systems (e.g., Forbus & Hinrichs, 
2006). 

The longer-term goal of our research program is to de-
velop a user-centered approach for teaching cognitive sys-
tems. For the moment, we will focus on the issue of natural-
ness and in particular the naturalness of the training interac-
tions these systems afford. In doing so, we draw on the hu-
man-computer interaction perspective that an understanding 
of interaction is central to the design and development of 
usable technology. In this paper, we first review commonly 
recognized characteristics of natural interaction from the 
HCI literature and propose a preliminary framework that 
characterizes the space of training interactions that cognitive 
systems could support. Ultimately, we intend this work to 
lay the foundation for the development of personal cognitive 
systems that users can naturally teach.  

 



What Makes an Interaction Natural? 
In order to create an initial framework for natural training 
interactions, we must first contend with what it means for an 
interaction to be natural. While it is common to think of ges-
ture and speech as lending naturalness to an interaction, the 
prior literature highlights that an interaction is not neces-
sarily natural by virtue of its physical modality. Norman 
(2010) argues that so called natural user interfaces (e.g., 
speech- and gesture-based) are not inherently more natural 
than graphical user interfaces (e.g., screen-based widgets). 
For example, gestural interfaces lack the affordances to let 
users know what gestures they support, whereas graphical 
user interface widgets, such as buttons, readily advertise 
their supported interactions. In general, this work suggests 
that the naturalness of a modality alone is neither necessary 
nor sufficient for making an overall interaction natural. 

Given that naturalness does not derive from modality, 
then what makes interaction natural? To address this ques-
tion, we reviewed the HCI literature on natural interactions 
and identified four common characteristics of systems that 
support naturalness: they (1) support the goals of the user, 
(2) do what the user expects, (3) allow the user to work the 
way they want, and (4) leverage users' experience to mini-
mize training. In this section, we review each of these char-
acteristics. 

Supports the goals of the user. Systems supporting nat-
ural interactions should be able to support what users want 
to do (i.e., their goals). One temptation in developing these 
systems is to overemphasize ease of use at the expense of 
limiting what users can achieve. Myers, Hudson, and Pausch 
(2000) refer to this balance as the threshold and ceiling of 
tools. Thresholds refer to the barriers a user must overcome 
to use a tool, whereas the ceiling describes what the tool en-
ables users to do. Many systems attempting to support natu-
ral interactions emphasize a low threshold, but often ignore 
the ceiling. For example, it is easy to interact with Siri, but 
it only supports built-in commands—it is unable to learn 
new commands. To overcome this risk, systems should be 
developed with end-user goals and intents in mind (e.g. the 
desire to teach Siri new user-defined commands), so that the 
developers can ensure the system does not limit users' capa-
bilities. 

Does what the user expects. A common theme in re-
search on natural interactions is an emphasis on the expec-
tations users have for a system (Myers, Pane, & Ko, 2004). 
Humans typically follow patterns, scripts, or norms when 
engaging in everyday interactions (Bicchieri, 2006), which 
make it possible for the humans involved in the interaction 
to know how to respond. For example, tutors generally ex-
pect that their pupils will attempt to solve problems before 
asking for help. Systems that aspire to naturalness should 
support naturally occurring patterns of interaction and be 
aware of users’ expectations within these patterns. It is 

worth noting that these patterns may arise from a user's par-
ticular cultural background (e.g., what roles their culture as-
cribes to teachers and students) or from their personal expe-
riences (e.g., whether they are a Mac or PC user). Addition-
ally, systems attempting to be natural should not require us-
ers to learn new (unnatural) patterns of interaction—devia-
tions from typical scripts make it difficult for users to know 
what the system will do next and how to respond accord-
ingly. 

Allows the user to work the way they want. Given that 
natural systems support users’ goals they should also let us-
ers execute those goals the ways they prefer or expect to. A 
key idea from the ubiquitous computing literature is that 
computing systems should become invisible because they 
seamlessly support the ways users want to do something 
(Weiser & Brown, 1996). They should not impede users or 
force them to achieve goals in unpreferred ways. For exam-
ple, a common trend is to build systems around a speech in-
teraction paradigm, but there are many situations where 
speech is an unnatural form of communication. In his study 
of architectural designers, Schön (1982) found that sketches 
of designs often better supported communication and rea-
soning than verbal articulations. This finding suggests that 
systems aiming to support natural architectural design 
should prefer sketch-based interactions over speech. 

Leverages users experience to minimize necessary 
training. One of the most pervasive ideas within research 
on natural user interfaces is the idea of instant expertise 
(Wigdor & Wixon, 2011), or the idea that users should not 
have to learn how to control a system because the modality 
used is one they have immediate familiarity with. In the 
words of Buxton (Larsen, 2010), "[natural user interfaces] 
exploit skills that we have acquired through a lifetime of liv-
ing in the world, which minimizes the cognitive load and 
therefore minimizes the distraction”. Common approaches 
within this space include voice- and text-based natural lan-
guage and gestural interfaces that take advantage of users' 
lived experiences interacting with other people. Addition-
ally, many users have extensive training with artificial inter-
faces, such as QWERTY keyboards, that may be natural for 
many application contexts, so it is worth noting that these 
artificial modes of interaction should not be discounted. 

A Preliminary Framework for  
Cognitive System Training Interactions 

In order to design cognitive systems that support natural 
training interactions, we require a better understanding of 
how these systems could hypothetically interact. In this sec-
tion, we will propose a framework for cognitive system 
training interactions that aligns with the four characteristics 
noted in the previous sections. We do not intend for this 



work to be complete but hope that it provides a useful lan-
guage to start talking about naturalness in the context of cog-
nitive systems and their instructional interactions with users.  

The framework characterizes four dimensions of training 
interactions between an agent and a human. First, we assume 
the goal of an interaction is to change some aspect of an 
agent’s knowledge. The interplay between agents and train-
ers follow instructional patterns. Within patterns, trainers 
engage in several types of interaction, and these interactions 
can be done through various modalities. Table 1 shows 
these four aspects of training interactions and presents ex-
amples of each. 

Knowledge. The goal of any training interaction is to up-
date the learner's knowledge. There are many types of 
knowledge that might be included in a cognitive system. 
However, within the literature, there are several generally 
accepted types of knowledge (Laird, Lebiere, & 
Rosenbloom, n.d.). For our preliminary framework, we in-
clude six such kinds of knowledge: goals, which fully or 
partially describe desirable states of the world; beliefs, 
which represent an agent's current worldview; concepts, 
which support semantic inference and enable an agent to 
augment its worldview with additional non-observable in-
formation; experiences, which organize past situations and 
problem-solving episodes; skills, which describe procedures 
for changing the world and updating beliefs; and disposi-
tions, which specify an agent’s problem-solving orientations 
(e.g., whether to explore or exploit). Our current focus is 
primarily on symbolic forms of knowledge arising from in-
teractions with a trainer, but future extensions of the frame-
work might also include sub-symbolic knowledge (e.g., 
learning probabilistic grammar knowledge for parsing Eng-
lish sentences or equations as in Li et al. (2015)). Further, 
we do not mean to imply that all cognitive systems must 
support all of these knowledge categories but rather that the 
nature of the knowledge being changed will likely dictate 
choices across the other dimensions of the framework. 

Patterns. Within human-human instructional settings 
there are many naturally occurring interaction and training 
patterns. These patterns govern the relationship between 
trainer and trainee and establish the contours for how train-
ing interactions play out. Inspired by existing systems 
(Hinrichs & Forbus, 2014; Kirk & Laird, 2014; MacLellan 

et al., 2016) and instructional practice (Chi & Wylie, 2014; 
Koedinger, Booth, & Klahr, 2013), our framework high-
lights several possible patterns. At its most simple, learning 
could be primarily passive, with agents observing training 
behaviors without active input from instructors. Increasing 
complexity, agents can have some control over their actions 
and receive rewards from the environment or an instructor 
(operant conditioning) or instructors can explicitly coach an 
agent, without requiring agent decision making (direct in-
struction). An even more complex pattern, apprentice learn-
ing (MacLellan et al., 2016), incorporate aspects of both of 
these approaches—both explicit instruction and feedback on 
agent actions. Additionally, many other instructional pat-
terns are possible, such as after-action review, Socratic 
learning (Chi & Wylie, 2014), and collaborative learning 
(Olsen, Belenky, Aleven, & Rummel, 2014). 

Types. Within a pattern, an instructor and trainee engage 
in many types of interactions. For example, within the ap-
prentice learning pattern (MacLellan et al., 2016), an in-
structor issues a command, which specifies the task for an 
agent to perform. If the agent does not know how to perform 
the task, then it might request a demonstration from the in-
structor, who provides one. On subsequent tasks, the agent 
might attempt the task (i.e., provide the instructor with a 
demonstration) and request feedback (i.e., a reward) on this 
attempt. Finally, the instructor provides the agent with the 
appropriate reward. Under this pattern, this process contin-
ues until the agent is correctly performing all of the tasks. 
Our framework also includes interaction types for support-
ing Direct Instruction (Hinrichs & Forbus, 2014; Kirk & 
Laird, 2014), which allow instructors to directly inform 
agents about the world ("TicTacToe is a two-player game"), 
spotlight agents attention on particular parts of the world 
("This [pointing] is a block"), and annotate demonstrations 
("This is the move action [demonstrate drawing of X on 
board]") to facilitate efficient learning. The types listed in 
Table 1 are drawn from existing systems as well as the liter-
ature on communicative acts (Allen, Blaylock, & Ferguson, 
2002; Traum & Hinkelman, 1992). This is not meant to be 
an exhaustive list, but is representative of the types that com-
monly occur in current practice. It is important to note that 
when we refer to interaction types we are interested in the 
overall instructional act being performed and not how it is 

Table 1. A Framework for Designing Natural Training Interactions for Cognitive Systems 

Knowledge Patterns Types Modalities 
• Goals 
• Beliefs 
• Concepts 
• Experiences 
• Skills 
• Dispositions 

• Passive Learning 
• Operant Conditioning 
• Direct Instruction 
• Apprentice Learning 
• After-Action Review 
• Socratic Learning 
• Collaborative Learning 

• Command 
• Clarify 
• Acknowledge 
• Inform 
• Spotlight 
• Annotate 
• Reward 
• Demonstrate 
• Request <type> 

• Command-Line Interface 
• Control device 
• GUI 
• Sketch 
• API 
• Gesture 
• Speech 
• Text 
• Multi-modal 



being performed. For example, orders delivered via a com-
mand line interface or spoken natural language are both in-
stances of the command type. 

Modalities. The different types of interactions ultimately 
ground out in particular modalities of interaction, with many 
different modalities, or potentially multiple simultaneous 
modalities, supporting each type. For example, command-
line or graphical-user interfaces, are both capable of sup-
porting all of the interaction types listed in Table 1. Typi-
cally, systems that claim to support natural interaction lev-
erage modalities commonly used in human-human interac-
tion as the primary modes of interaction. For example, the 
Microsoft Kinect enables gesture- and speech-based inter-
actions. A key aspect of modalities from our perspective is 
that they are cast in terms of what the trainer is doing and 
not necessarily how an action is being detected by an agent. 
For example, a gesture such as waving could be detected us-
ing either visual sensing with a camera or gyroscopic sens-
ing with a wearable device (e.g., Taylor, Quist, Lanting, 
Dunham, & Muench, 2017); in either case, the trainer would 
be using a gestural modality. 

These four dimensions intentionally map to the four char-
acteristics highlighted in the previous section. In particular, 
in the context of training, supporting a user's goals consists 
of supporting of the types of knowledge transference they 
are trying to achieve. Users' expectations regarding training 
will derive from the social instructional patterns they have 
experience with. Thus, in order to naturally support training 
interactions, it is important for system designers to be aware 
of the interaction patterns that users expect. Further, users 
will want to interact in certain ways and system designers 
should be aware of the different types of interactions they 
want to perform. Finally, for each type of interaction, system 
designers should leverage modalities that draw on users' 
prior experience. 

Other Existing Frameworks 
The concept of decomposing human-agent interactions us-
ing a framework is not new and multiple decompositions ex-
ist in the prior literature. For example, Laird et al. (2017) 
divide interactive task learning systems by the mode of com-
munication used (natural language or demonstration) and 
the type of knowledge taught (goals, concepts, actions, and 
procedures). Our work differs in that it also emphasizes the 
importance of higher-level interaction patterns, such as pas-
sive learning, direct instruction, and apprentice learning. 
Many interactive task learning systems use a pattern similar 
to apprentice learning, so this dimension may have less var-
iation within that literature. Additionally, we make a distinc-
tion between interaction types and modalities because it is 
possible for interactions to be communicated via different 

modalities, such as a demonstration (an interaction type) be-
ing communicated using sketch, speech, or a graphical user 
interface (different modalities).  

Another related line of work is Bartneck and Frolizzi’s 
(2004) human-robot interaction framework, which, like our 
framework, has categories for patterns—called norms—and 
modalities. However, this framework focuses on robot’s so-
cial interactions with humans more generally, rather than 
training interactions specifically, and so does not have di-
mensions for the types of knowledge being taught. Addi-
tionally, we emphasize interaction types, which form an in-
termediate layer of abstraction between patterns and modal-
ities. Finally, as their work emphasizes the physicality of ro-
bots, it also distinguishes systems by the form they take 
(e.g., abstract or anthropomorphic). However, as our work 
is less concerned with the physical embodiment of agents, 
we do not make this distinction, but it is not incompatible 
with our current thinking. In general, while many existing 
frameworks share commonalities with the one proposed 
here, their focus is either more general (interaction broadly) 
or directed toward a different kind of interaction (non-train-
ing interactions). Thus, we believe our framework combines 
prior ideas, but still presents a novel perspective on interac-
tion that is better aligned with our high-level goal of build-
ing cognitive systems that are natural for end users to train. 

Discussion and Future Work 
In proposing this initial framework, we aim to achieve three 
objectives. First, we attempt to highlight what we view as a 
key opportunity within cognitive systems research: to better 
understand the space of training interaction and develop 
cognitive systems that are natural and efficient for users to 
teach and interact with. Recent research efforts, such as Ro-
sie (Kirk & Laird, 2014), the Companion Architecture 
(Forbus & Hinrichs, 2006), and the Apprentice Learning Ar-
chitecture (MacLellan et al., 2016), have begun exploring 
different combinations of patterns, types, and modalities to 
support training interactions with end users. Each of these 
systems represent particular choices across the dimensions 
of our framework. To reach a more complete understanding 
of the space of training interaction design, researchers 
should explore additional approaches and new combinations 
of approaches in order to explore the space more broadly 
and ultimately direct work toward designing more natural 
means for training cognitive systems. 

Second, organizing training interactions along an orthog-
onal set of dimensions enables a modular approach to the 
challenge of building cognitive systems to support natural 
training interactions. Individual researchers or developers 
need not contend with the whole problem and can instead 
focus on addressing subproblems. For example, one team of 



researchers might investigate which patterns are best for ac-
quiring skills knowledge, whereas another team might in-
vestigate which patterns are best for acquiring concepts. Be-
cause these decisions are orthogonal, both teams can benefit 
from each other's work and integrate their findings within 
the common structure of the framework to support the de-
velopment of systems that can naturally learn both skills and 
concepts. Thus, the framework supports the unification of 
independent research efforts, even if these efforts do not ex-
plicitly describe their work within this framework.  

Finally, towards the goal of actually building cognitive 
systems that people can naturally train, we intend our frame-
work to provide a language for formulating scientific hy-
potheses about how such systems should interact with users 
to best achieve naturalness. Much of the existing work im-
plicitly assumes that choosing natural approaches for only 
one of the components of the framework (patterns, types, or 
modalities) establishes the overall naturalness of a system. 
For example, Hinrich and Forbus (2014) emphasize the use 
of multiple natural modalities, such as text and sketching, 
whereas MacLellan et al. (2016) emphasize the use of a nat-
ural pattern. Central to our framework, however, is the hy-
pothesis that different combinations of patterns, types, and 
modalities of interaction are better suited for updating dif-
ferent kinds of knowledge. Thus, we believe that systems 
that are natural for users to teach will not only support a 
wide range of patterns, types, and modalities, but flexibly 
choose the appropriate combination based on the type of 
knowledge being communicated, the trainer’s preference, 
and potentially other contextual factors. There is evidence 
that learning in humans follows a similar logic, in that dif-
ferent kinds of knowledge are best taught by different forms 
of instruction (Koedinger, Corbett, & Perfetti, 2012). Given 
that an artificial intelligence need not represent a natural sys-
tem, there is no inherent reason to transfer this logic (Simon, 
1983). However, if we want to support humans in naturally 
training such systems, then it becomes important to under-
stand these relationships and how they might impact differ-
ent kinds of training. In conclusion, it is our hope that this 
framework will focus attention on this issue, provide a lan-
guage for talking about training interactions and their natu-
ralness, and guide future research on this exciting frontier of 
personal cognitive systems. 
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