
Investigating Machine-Learning Interaction with
Wizard-of-Oz Experiments

Rob Sheline
Soar Technology, Inc.
Ann Arbor, MI 48105

rob.sheline@soartech.com

Christopher J. MacLellan
Soar Technology, Inc.
Ann Arbor, MI 48105

chris.maclellan@soartech.com

Abstract

Machine-learning research has historically focused on improving learning algo-
rithms but often neglects the context within which a learning technology is situated,
and only minimally evaluates how natural and efficient these systems are for users to
interact with. To better investigate these aspects of machine-learning, we introduce
a novel experimental methodology, which we refer to as dual-sided, restricted-
perception Wizard-of-Oz experiments, and describe a web-based framework for
executing them. In classic Wizard-of-Oz experiments, a researcher rapidly tests a
hypothetical Artificial Intelligence system with real users by manually simulating
its capabilities. We extend this approach to support the prototyping and evaluation
of interactive learning systems by instead simulating the learning technology using
a naïve experimental participant, who learns the task by receiving the same inputs
and outputs as the hypothetical learning system. We present proof-of-concept
efforts to use this paradigm to evaluate hypothetical learning systems in the domain
of service robotics.

1 Introduction

Machine learning has come a long way in a short time. Research has shown that learning-enabled
systems can achieve or exceed human-level performance on a wide variety of complex tasks (He et al.,
2015; Mnih et al., 2015), given sufficient engineering effort. As the field matures, more attention is
being given to machine-learning cost and developmental complexity, rather than pure performance.
For instance, Simard et al. (2017) makes a call for differentiating machine learning from machine
teaching. While the former focuses on developing new algorithms to improve the accuracy of the
“learner,” the latter centers on increasing the efficacy of the “teachers.” The hope is that, as the field
matures, we will see increased productivity and turnaround—as we have seen in recent decades
within the software development community. Nonetheless, for now at least, designing and tuning
machine-learning systems remains expensive.

This shift in focus highlights the need for further study of how users interact with machine-learning
systems. However, this creates a chicken-and-egg dilemma: we wish to study the space of machine-
learning system interaction designs, but evaluating different interactions requires machine-learning
components to exist in the first place. While this is not a problem for evaluating existing machine-
learning systems, we are particularly interested in exploring hypothetical machine-learning systems
for which necessary capabilities do not yet exist or for which building theses capabilities is practically
infeasible.

Our solution to this dilemma is inspired by Wizard-of-Oz (WoZ) studies (Dahlbäck et al., 1993), a
classic approach to design within the Human-Computer Interaction (HCI) community. WoZ studies
circumvent the up-front cost of fully engineering an intelligent system or agent (Maulsby et al., 1993)
by substituting a human “behind the curtain” who simulates the desired behavior. This allows for rapid,

Learning by Instruction Workshop (NIPS 2018), Montréal, Canada.

iterative design at lower cost. Recent work has explored the use of WoZ studies to investigate social
interaction strategies that hypothetical robots might use when interacting with humans (Sequeira et al.,
2016). This work leverages a novel restricted-perception paradigm, that constrains the information
available to the “wizard” to precisely what would be available to the hypothetical social robot. This
constraint reduces experimental confounds which may arise due to perceptions uniquely available to
the “wizard”, and enables researchers to test whether the information being provided to “wizard” is
sufficient for them to execute a particular social interaction strategy.

While these methodologies have been successfully applied to investigate AI and robotic system
interactions, they have not been employed to investigate machine-learning system interactions. To
extend these approaches to support the rapid prototyping of learning systems, we propose the use of
dual-sided, restricted-perception, Wizard-of-Oz experiments. Rather than having a knowledgeable
researcher/experimenter as a “wizard” on the back end, this new approach employs a naïve participant
that must learn from the same inputs as the hypothetical learning system. Like existing restricted-
perception methods, our variant constrains the interactions allowed between the “wizard” and the
external world to those available to the hypothetical learning system. Although this new approach is
preliminary, we believe it should enable researchers to cost effectively evaluate the interactions of
the hypothetical system as well as preliminary test whether the information provided to system is
sufficient for learning, under the assumption that if the humans cannot learn from the inputs then a
machine is unlikely to be able to.1.

To test the feasibility of our approach, we conducted a small pilot to evaluate three hypothetical
learning systems in the domain of service robotics. Each hypothetical system used a different
machine-learning interaction pattern from the Natural Training Interactions framework (MacLellan
et al., 2018). The patterns used were: direct instruction, operant conditioning, and apprentice learning.
See Appendix B for a more detailed explanation of how the patterns function.

Our results, while preliminary, demonstrate that this approach can be successfully applied to the
rapid evaluation of hypothetical learning system interaction designs and that this approach can yield
useful quantitative measures for assessing potential designs.

2 Prior Work

2.1 Machine Teaching

At present, intelligent applications (ML and AI systems) typically require painstaking and skilled
efforts to design and implement. There is a clear demand for developers of intelligent systems,
not met by the available supply of expert labor. Simard et al. (2017) recommends disambiguating
machine-learning from machine-teaching, so that developers can receive specialized training in how
best to both develop and teach learning systems.

In traditional machine-learning, the focus of effort and research is primarily on developing better
algorithms. In contrast, machine-teaching is concerned with improving how developers interact with
learning systems, including amount and sophistication of human intervention required. Professional
software development has matured over the past 50 years. Abstractions such as high-level languages,
design patterns, documentation, software architecture, unit-testing, and version control have created a
world where software can be produced in a consistent and reliable way. Software artifacts can be made
reusable, portable, and maintainable, and need not be married to the engineers who implemented
them. Contrast this with the state of modern machine-learning, where models can be frighteningly
opaque and robust interoperability standards are often non-existent.

This distinction between machine learning and teaching is recent and, thus, machine teaching is
a nascent field. Producing machine-learning enabled systems involves developing models (in the
traditional sense) integrated with more typical software objects. However, since models are often
coupled tightly with these environments. It can be difficult to apply the kind of iterative development
pattern (e.g., agile, waterfall) common in software engineering to teaching learning systems: the
model is an over-constrained black box, creating a developmental bottleneck. We seek to alleviate
this issue by providing a method with which to learn about how best to interact with learning systems
without depending on a previously-existing, well-behaved model.

1We recognize that this assumption is dubious, but believe it serves as a reasonable diagnostic

2

Knowledge Patterns Types Modalities

• Goals • Passive Learning • Command • Command Line
• Beliefs • Operant Conditioning • Clarify • Control device
• Concepts • Direct Instruction • Acknowledge • GUI
• Experience • Apprentice Learning • Inform • Sketch
• Skills • After-Action Review • Spotlight • API
• Dispositions • Collaborative Learning • Annotate • Gesture

• Programming • Reward • Speech
• Demonstrate • Text
• Direct Knowledge manipulation • Multi-modal
• Request <type>

Table 1: The Natural Training Interaction Framework.

2.2 Natural Training Interactions Framework

Much of the existing research on knowledge transfer centers on the development of new machine-
learning capabilities and only minimally evaluates how natural and efficient learning systems are for
users to interact with. MacLellan et al. (2018) draw attention to the question of what makes interaction
with a learning system natural for human instructors (i.e., the users) and then work backwards to
develop the necessary computational capabilities for a system to learn from these interactions. This
user-centered approach has yet to be explored within the machine-learning community, but has been
widely successful within the HCI community. In particular, it has been found to be a consistently
reliable approach for developing usable technologies.

To support this process MacLellan et al. (2018) present the Natural Training Interactions framework,
which describes the space of possible interaction patterns a learning system might employ (see
Table 1) The framework assumes that the goal of teaching a system is to change some aspect of its
knowledge. To update knowledge, a learning system and a trainer interact according to instructional
patterns. Within patterns, they employ several types of interactions, and these interactions can be
done through various modalities.

This framework describes multiple commonly used patterns within existing learning systems, such as
operant conditioning (reinforcement learning), direct instruction (learning-by-demonstration), and
apprentice learning (interactive task learning). It also provides a language for formulating scientific
hypotheses about how learning systems should interact with users to best achieve naturalness.

Based on this framework, MacLellan et al. (2018) hypothesize that different combinations of patterns,
types, and modalities of interaction are better suited for updating different kinds of knowledge,
mediated by the trainer’s preferences and potentially other contextual factors. From an engineering
prospective, this hypothesis provides a means of decomposing the problem of efficiently transferring
knowledge to a learning system into multiple sub-problems that can be tackled with individual
research efforts. It seems most obvious to break the problem down by the type of knowledge being
transferred (e.g., focusing on skill knowledge). Equipped with this hypothesis, it should be possible to
explore approaches for each knowledge type independently and then combine the different approaches
together into an overall architecture that supports all knowledge types.

3 Natural Training Interaction Testbed

In order to investigate different learning system interaction patterns, we developed the dual-sided,
restricted-perception WoZ experimental methodology, mentioned previously. We extended restricted-
perception WoZ experiments to study the implications that choice of learning patterns has on
naturalness of user-experience as well as performance in computer-embeddable tasks. In conception,
it is similar to prior work on using WoZ experiments to study social interaction (Sequeira et al.,
2016), but our interest is in applying the approach to investigate interaction with machine-learning

3

Figure 1: The Dual-Sided, Restricted-Perception, Wizard-of-Oz Experimental Design

systems. Figure 1 shows the general experimental design for our approach, where teacher and student
participants interact in parallel through a perception filter.

Our method relies on the assumption that a human subject is a useful proxy for an arbitrary learning
system. We understand that this assumption breaks down in the limit, but believe that for a wide
variety of currently desirable and feasible AI tasks, it is a reasonable assumption to make. To that end,
test subjects (students) should be agnostic of the task, as much as is possible. Of course humans bring
prior knowledge to the table: at the very least, "common sense" notions such as causality, how to
navigate ≤ 3 dimensional spaces, etc. Though a potential complication, similar generic capabilities
could be in principal supplied to a learning system, and is in any event unavoidable.

To test the feasibility of this methodology, we engineered the Natural Training Interactions Testbed
for conducting these experiments (see Figure 2). We created a training user interface (UI) which
embeds the task (an HTML/JavaScript page where the task is nested inside a single <div>). The
training UI handles training interactions, and essentially is the window/filter through which subjects
view the experiment, and accordingly have their perception restricted. The interface supports different
modalities: currently command line, text, and GUI in the form of clickable buttons, but in principal
any found in table 1. The training UI communicates with the testbed (experiment server, see section
3) in order to administer the experiment.

The testbed allows novel tasks to be studied in a WoZ-experiment without having to start from scratch,
given an implementation of the testbed interface. The testbed uses a variety of modern software
technologies (opensource where possible). See Appendix A for a more thorough examination of
these components.

In designing the testbed we specified a conceptual API, here implemented in Python as endpoints of
a flask web-server. The API is implemented on by the client side, with the caveat that a client can
be either a teacher or student. Upon receiving a request to participate, the server will send clients
an initial state, or alternatively tell them to generate one. The clients have access to a UI with two
sub-modules, the training-UI and the task-UI. In the course of administering a particular learning
pattern, the server can lock and unlock either of these UIs (canonically, either the teacher or the
student will have an unlocked UI at one time, but this need not be the case). When an action is
taken in the task-UI, the server forwards it to the other participant. When an action is taken in the
training-UI (such as "disallow previous action" or "request assistance") the server will update the
task-state appropriately (rewind the game state, let the teacher take a move, respectively).

Our goal is the ability to prototype Wizard-of-Oz experiments using the same interface the machine-
learner uses, or is envisioned to use. Additionally, the architectural components (task, interaction
pattern, learner) and software components (server, client, data store) are intended to be as modular as
possible so learned-lessons can be incorporated into future work, without having to recreate each
component from scratch.

4 Pilot Study

4.1 Method

A simple service-robotics task was implemented in Unity/WebGL (see bottom portion of figure 2).
Players maneuver around a randomly generated maze-like set of corridors and rooms, and encounter
objects which they can pick up and put down. In addition to maintaining the game state/physics, the
Unity object implements the Task API. In this way, aside from implementing this interface, the Unity
object is agnostic to the existence of the experiment, training interaction, student and teacher. The
testbed is (as much as possible) likewise agnostic about the state of the unity object.

4

Figure 2: Architecture for Natural Training Interaction Testbed

Using the Natural Training Interaction testbed configured against the robot navigation task, we
performed dual-sided, restricted-perception, WoZ experiments using participants sourced through
Amazon Mechanical Turk. Upon viewing and accepting the experiments advertising on the MTurk
worker dashboard, users were redirected to an amazon EC2 instance under our control. Subjects were
first shown a consent and release form, and then instructions. The instructions explained how to use
the training interface, and in the case of the teacher, specifics detailing the task. Teachers and students
were told that they would receive a bonus corresponding to how accurately, quickly, and efficiently
the student performed the task (so that both were motivated to actually learn the task).

While subjects read the instructions, teacher-student pairs were created and assigned one of three
interaction patterns: Operant Conditioning, Direct Instruction, Apprentice Learning, see Table 1
and prior work for more details MacLellan et al. (2018). Additionally, five game scenarios from a
procedurally-generated and verified pool were assigned to each pair. Of these five scenarios, three
were used as a training set for teachers and students; the remaining two were used as a test set for the
student.

4.2 Results

We ran a small-scale pilot experiment to assess the feasibility of our methodology and experimental
testbed. At the end of the pilot, we asked participants to provide seven ratings on a scale of 1-
5. The ratings were designed to ascertain how natural and effective they felt their session was.
Appendix C lists the specific evaluation questions we used, which were based on a previous set of
metrics for evaluating interactive learning systems (Laird et al., 2017). Figure 3 shows a summary
of pilot participants answers on this survey . Although these results suggest some differences
between the different interaction patterns we tested, we do not intent any conclusions to be drawn
from these results. Instead, we provide them as a demonstration of the kinds of evaluations that
can be performed on hypothetical learning systems using our methodology (e.g., naturalness and
effectiveness). Additionally, they provide a demonstration of the kinds of comparisons that might be
made between different kinds of interactions patterns, such as direct instruction being less easy for
teachers (Q7) and apprentice learning being generally better for teachers (along all dimensions).

5

Q1

Q2

Q3

Q4Q5

Q6

Q7

Direct Instruction

disagree
neutral
agree

Teacher
Student Operant Conditioning Apprentice Learning

Figure 3: Survey results. Average Likert score for questions Q1-Q7

5 Limitations and Future Work

This work is preliminary, and while results were promising, we did encounter a number of practical
issues that made executing these experiments challenging. In particular, it was difficult to get users to
cooperate with a partner for long enough to complete a session. During a pilot with researchers from
our lab, we found that the human learners often struggled to learn the dynamics of our 2D service
robotics task. Occasionally, the teacher would get frustrated with the student and give up. Our testbed
does not not currently have the means to appropriately capturing these frustrations, which we should
explore in future work. Additionally, we encountered numerous difficulties with participants falling
out of sync, in terms of task as well as participation. Future work should explore techniques for
enabling a more seamless experience.

In conclusion, we presented a new experimental approach for evaluating machine-learning interaction
designs: dual-sided, restricted-perception, WoZ experiments. To demonstrate the feasibility of this
approach we developed the Natural Training Interactions testbed and used it to conduct a small
pilot study. The results of our pilot show that it is possible to use this approach to rapidly evaluate
hypothetical machine-learning systems.

6 Acknowledgements

This material is based upon work supported by the OFFICE OF NAVAL RESEARCH under Contract
No. N68335-18-C-0401. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the OFFICE OF
NAVAL RESEARCH.

References
Dahlbäck, N., Jönsson, A., and Ahrenberg, L. (1993). Wizard of oz studies—why and how.

Knowledge-based systems, 6(4):258–266.

Hawkins, R. X. (2015). Conducting real-time multiplayer experiments on the web. Behavior Research
Methods, 47(4):966–976.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034.

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins, O. C., Lebiere, C., Salvucci, D., Scheutz,
M., Thomaz, A., Trafton, G., Wray, R. E., Mohan, S., and Kirk, J. R. (2017). Interactive task
learning. IEEE Intelligent Systems, 32(4):6–21.

MacLellan, C., Harpstead, E., Mariner III, R. P., and Koedinger, K. R. (2018). A Framework for
Natural Cognitive System Training Interactions. Advances in Cognitive Systems, 6:1–16.

6

Maulsby, D., Greenberg, S., and Mander, R. (1993). Prototyping an intelligent agent through wizard
of oz. In Proceedings of the INTERACT’93 and CHI’93 conference on Human factors in computing
systems, pages 277–284. ACM.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540):529.

Sequeira, P., Alves-Oliveira, P., Ribeiro, T., Di Tullio, E., Petisca, S., Melo, F. S., Castellano, G., and
Paiva, A. (2016). Discovering social interaction strategies for robots from restricted-perception
wizard-of-oz studies. In The Eleventh ACM/IEEE International Conference on Human Robot
Interaction, pages 197–204. IEEE Press.

Simard, P. Y., Amershi, S., Chickering, D. M., Pelton, A. E., Ghorashi, S., Meek, C., Ramos, G., Suh,
J., Verwey, J., Wang, M., et al. (2017). Machine teaching: A new paradigm for building machine
learning systems. arXiv preprint arXiv:1707.06742.

Appendix A. Natural Training Interaction Testbed components

Amazon Mechanical Turk (MTurk) is an online marketplace for human intelligence tasks. Acces-
sible via programmatic API, workers can be requisitioned at any time of the day, and from a wide
variety of sub-populations according to experimental need. Most existing web-based experiments do
not involve participants interaction in a persistent sense, due to technical limitations of HTTP request
methods. (Hawkins (2015)). A variety of modern web programming tools allow us to go beyond
these technical limitations.

Psiturk is an open-source python framework for conducting experiments with MTurk. It streamlines
some of the boilerplate obstacles most experiments will likely face. Small modifications needed to be
made to to the framework to support bi-directional socket communication required by the experiment.

Flask Under the hood, PsiTurk hosts the experiment via Flask, a python-based web-server. The
testbed is implemented as a flask blueprint, which PsiTurk registers within its own flask server. Thus,
the server implementation is not coupled to PsiTurk, and could function independently. In effect,
PsiTurk wraps the experiment server and acts as a broker between it and MTurk, in addition to
providing the aforementioned experiment boilerplate.

Socket.io "enables real-time, bidirectional and event-based communication between the browser
and the server". Unlike HTTP and like websockets, socket.io is bi-directional, so a message can
be initiated by either party. Thus, socket.io is the communication medium of the testbed; any
computer-based task to be studied and ultimately learned will need to be able to implement the
testbed API.

Redis is an-memory data store, which the testbed uses as a cache and message broker between worker
threads. Flask uses eventlet worker threads under the hood for concurrency. Eventlet brokers socket.io
communications to threads using a FIFO queue. When a message is received, the thread retrieves
the corresponding experiment state from redis, mutates it according to the interaction pattern being
used, and stores it back in redis. Because of the current experimental design (teacher and student take
turns interacting), there is little to no risk of the users or experimental state becoming desyncronized.
Nonetheless, because of concerns surrounding this and potential non-deterministic outcomes in unity,
custom logic was embedded in the server to detect and fix possible desynchrony. Future effort may
be directed at this problem, though it is only likely to be an issue at very large scale (many concurrent
connections) or with asynchronous interaction patterns (teacher and student can interrupt each other).

Appendix B. Learning patterns

The three learning patterns used in the pilot study (see table 1). In all cases, teachers and students
were instructed how to use the training interface, but only teachers were instructed how to use the
task interface.

In all cases, students were instructed to ascertain how the task interface functioned, as well as what
the goal within the task was. Then at testing time, they were instructed to execute the goal. (The goal

7

might be, for example, "bring the green cross to the blue star": something readily understandable in
english, but also able to be scored programmatically.)

In the case of Operant Conditioning and Apprentice Learning, students had the additional option
within the training interface to "mark task complete". When they believed they had completed the
task, they would ask the teacher to approve. In the case of direct instruction, teachers simply indicated
the task was complete.

When the teacher decided that the task was complete (whether demonstrating or approving), the
experiment proceeded to the next scenario.

• Direct Instruction Teachers were instructed to execute the task. Students were instructed
to passively observe.

• Operant Conditioning Students were allowed to act. After each action within the task
interface, teachers were given the option approve/deny. If they denied, the game-state was
rewound and the student informed that their action was incorrect.

• Apprentice Learning An extension of operant conditioning. Students took actions, which
were approved/denied by the teacher. Additionally, students could "request demonstration"
from the teacher, who would take one action.

Appendix C. Exit Surveys

After participating in the experiment, subjects were instructed to respond to the following statements
on a scale of 1-5 (Strongly Disagree, Disagree, Neither Agree nor Disagree, Agree, Strongly Agree):

Student Likert Statements

1. I learned to correctly perform the task by the end of training.
2. I only needed a few examples to learn.
3. I was able to quickly decide what actions to take next.
4. Learning from the AI teacher was natural and intuitive.
5. The instructional feedback provided by the AI teacher was always useful.
6. I always received the instruction from the AI teacher that I wanted.
7. Learning from the AI teacher was easy.

Teacher Likert Statements

1. The AI student learned to correctly perform the task by the end of training.
2. The AI student only needed a few examples to learn.
3. The AI student quickly decided what actions to take next.
4. Instructing to the AI student was natural and intuitive.
5. The instructional options I was presented with were always useful.
6. I was always provided with all the instructional options I wanted.
7. Instructing the AI student was easy.

8

	Introduction
	Prior Work
	Machine Teaching
	Natural Training Interactions Framework

	Natural Training Interaction Testbed
	Pilot Study
	Method
	Results

	Limitations and Future Work
	Acknowledgements

