Going Online: A simulated student approach for evaluating
knowledge tracing in the context of mastery learning

Qiao Zhang
Drexel University
Philadelphia, PA, USA
giao.zhang@drexel.edu

ABSTRACT

Knowledge tracing algorithms are embedded in Intelligent
Tutoring Systems (ITS) to keep track of students’ learn-
ing process. While knowledge tracing models have been
extensively studied in offline settings, very little work has
explored their use in online settings. This is primarily be-
cause conducting experiments to evaluate and select knowl-
edge tracing models in classroom settings is expensive. To
fill this gap, we introduce a novel way of using machine-
learning models to generate simulated students. We con-
duct experiments using agents generated by the Apprentice
Learner Architecture to investigate the online use of differ-
ent knowledge tracing models (Bayesian Knowledge Tracing,
the Streak model, and Deep Knowledge Tracing). An anal-
ysis of our simulation results revealed an error in the initial
implementation of our Bayesian knowledge tracing model
that was not identified in our previous work. Our simula-
tions also revealed a more fundamental limitation of Deep
Knowledge Tracing that prevents the model from supporting
mastery learning on multi-step problems. Together, these
two findings suggest that Apprentice agents provide a prac-
tical means of evaluating knowledge tracing models prior to
more costly classroom testing. Lastly, our analysis identi-
fies a positive correlation between the Bayesian knowledge
tracing parameters estimated from human data and the pa-
rameters estimated from simulated learners. This suggests
that model parameters might be initialized using simulated
data when no human-student data is yet available.

Keywords
Computational Models of Learning, Simulated Students,
Knowledge Tracing

1. INTRODUCTION

Intelligent Tutoring Systems (ITS) are used within K-12 ed-
ucation to improve learning outcomes. In addition to provid-
ing students with scaffolding and feedback, tutors utilize an
approach called knowledge tracing to estimate what students

Christopher J. Maclellan
Drexel University
Philadelphia, PA, USA
christopher.maclellan@drexel.edu

know and do not know [2]. When combined with a problem
selection policy [16], knowledge tracing enable tutors to sup-
port mastery learning and to focus students practice where it
is most needed (i.e., on the skills they do not yet know rather
than the skills they already know). While many studies
have explored knowledge tracing for offline evaluation (fit-
ting knowledge tracing models to existing data sets), there
is comparatively little work on evaluating these algorithms
in online settings (evaluating how well these algorithms es-
timate students’ mastery from just a few data points and
decide when to stop giving them additional problems).

We aim to understand which knowledge tracing models yield
the greatest mastery learning efficiency in online settings.
Additionally, we want to find out how the parameters for
knowledge tracing models can be selected before human data
is collected. To meet our need for multiple experiments to
investigate our knowledge tracing questions, we introduce
a novel way of using computational models of learning, or
simulated student models that learn from interactions with
a tutor just like human students do, to simulate our knowl-
edge tracing experiments. We use the Apprentice Learner
architecture [10], a machine-learning framework that aims
to model how humans learn from examples and feedback to
generate simulated students and conduct experiments.

To explore the feasibility of this approach, we conducted ex-
periments to compare Bayesian Knowledge Tracing (BKT)[2]
to the Streak model [7] and Deep Knowledge Tracing (DKT)
[15]. Our simulations show that both BKT and Streak stop
before giving all the problems, but that BKT is slightly more
aggressive than Streak and seems to assume students have
mastered skills a bit earlier than expected. Upon further
inspection, our analysis revealed a bug in our underlying
implementation of BKT (which we fixed for this study).
Further, we found that DKT exhibits strange behavior that
makes it unusable in certain cases of mastery learning and
problem selection. This limitation of DKT for mastery learn-
ing has not been identified in prior work. These findings
demonstrate that simulation students might serve a valu-
able role in testing knowledge tracing models before more
costly classroom deployments.

We also explore the use of simulated data from these exper-
iments to estimate initial parameters for the BKT model.
Prior to collecting human data, knowledge tracing param-
eters are often set to reasonable hand-picked defaults. A
better approach is to run a pilot study with human students

to collect data for model training, which requires additional
time and labor. Our analysis identifies a positive correlation
between the BKT parameters estimated from the simulated
data and those estimated from human data, suggesting sim-
ulated data might be used to initialize parameters.

2. BACKGROUND
2.1 Knowledge Tracing

The main purpose of knowledge tracing is to track students’
skill mastery and predict their future performance based on
their past activity. Knowledge tracing uses labels of the
skills needed for each step, which we call Knowledge Compo-
nents (KCs), and students’ first attempt correctness (correct
or incorrect) to predict whether the students will correctly
solve a new problem containing the same KC.

2.2 Bayesian Knowledge Tracing

BKT [2] is a well-known knowledge tracing algorithm that
can estimates whether students have learned a particular
skill given their past performance on opportunities to prac-
tice that skill. It models student knowledge using a Hidden
Markov Model, where the hidden state is estimated from
observations of students’ correctness on each step. For each
skill, a student can be in one of the two possible knowl-
edge states: “unknown” or “known”. A binary response (cor-
rect or incorrect) is generated at each opportunity a student
practices a skill [5]. Although, BKT supports the ability to
model forgetting, it is typically assumed that students never
forget what they have mastered [16]. If a student reaches
95% probability of being in the known state for a skill, the
skill is marked as being mastered by the student. With these
assumptions, the BKT model has four parameters.

e P(Lo): initial probability of mastery (“known”).

e P(T): probability of learning the skill (“learn”).

e P(G): probability of guessing the answer (“guess”).

e P(S): probability of making a mistake (“slip”).
Researches have created variants of the BKT model. Yudel-
son et al. [20] introduced an individualized BKT model that
can take student differences in initial mastery and skill learn-
ing probabilities into account. Nedungadi et al. [13] created
PC-BKT (Personalized and Clustered), which has individual
priors for each student and skill, and dynamically clusters
students based on learning ability. This prior work aims to
improve predictive performance over original BKT. Despite
the quantity of research on BKT models, there is relatively
little evaluation in online settings.

2.3 Streak Model

Another knowledge tracing approach that is popular for use
within mastery learning is the Streak model. Also known
as “three-in-a-row” [7], it is a relatively simple and intuitive
model since it only has one parameter, how many correct
answers in a row equates to mastery. It was first applied in
ASSISTments and the key idea was to keep giving the stu-
dent questions until some proficiency threshold was reached.
The default setting was “three correct in a row” but this
could be manipulated by teachers.

2.4 Deep Knowledge Tracing
DKT [15] is a knowledge tracing model that has been receiv-
ing increasing attention. This model leverages information

about students sequence of steps and correctness on those
steps to predict performance on subsequent steps. Addition-
ally, DKT leverages information about performance on one
skill to improve predictive performance on other skills. DKT
uses a long short-term memory (LSTM) architecture, which
is a kind of recurrent neural network that allows for the
modeling of non-Markovian processes. Recent work evalu-
ating DKT [6, 8] suggests that DKT often outperforms BKT
in terms of predictive performance. Despite this promising
finding, there has been very little work exploring the use
of DKT within online knowledge tracing (e.g., for mastery
learning within a tutor). Beyond the original DKT work
[15], which explores the use of DKT for next step recom-
mendation, we are unaware of any research programs that
currently uses DKT in this way.

Finally, it is worth noting that knowledge tracing is not
strictly necessary for tutoring systems. Many tutors either
use a fixed problem sequence or present a fixed number
of problems in a random order. However, we hypothesize
that knowledge tracing in conjunction with mastery learn-
ing component is one of the main components of tutors that
makes tutors effective.

2.5 Computational Model of Learning

The Apprentice Learner Architecture is a framework for
modeling human learning from demonstrations and feed-
back in educational environments [10]. We use an Appren-
tice model previously developed in prior work; see [11] for a
complete description of the model. Most work in the field
of educational data mining focuses on building mathemati-
cal, predictive models of learning. In contrast, the Appren-
tice models actually perform the task (not just predict per-
formance). They induce task-specific knowledge from the
demonstrations and feedback they receive. Apprentice mod-
els are ideal for the current study because they do not require
prior human data to operate. They can predict learning and
behavior based solely on the task structure.

3. METHODOLOGY

We created 30 simulated students (Apprentice agents) to
solve problems in a fraction arithmetic tutor (tutor pre-
sented in [14]). The tutor had three different types of prob-
lems: Add Different (AD), add fractions with different de-
nominators; Add Same (AS), add fractions with same de-
nominators; Multiplication (M), multiply two fractions.

3.1 Experiment Design

Our study had six conditions: Random, Streak, BKT_default,
BKT_random, BKT_human and DKT_random. There were
four types of conditions: Random, BKT, Streak, and DKT,
which differ in the way they select the next problem to give
to a simulated student. In the Random condition every
problem was assigned only once in random order and the
training ends when problems run out. Since Random gives
the most training, it produces the highest correctness pre-
diction by the end of practice. We use Random as a baseline
for evaluating other models.

The other conditions use the respective knowledge tracing
approaches for mastery learning and problem selection. Dur-
ing problem selection, each knowledge tracing model ran-
domly chooses a problem with at least one unmastered skill

80 0 71.77
70
60
50
40
30

20 17.40

14.03
1037957 1127

10.13 9.00
10 627 6.37 5.93 6.80 630
l. 293 2.47
0

BKT_default ~ BKT_random BKT_human DKT_random
mAD mAS =M

Random Streak

Figure 1: Num. problems given in each condition (by type).

and updates the student’s mastery level based on the result.
The training ends once the proficiency threshold is reached
(95% in all cases but Streak, where it was 3 in a row).

The parameters in BKT_default were manually set based on
our prior experience with BKT. We set P(Lg) to 0.1, P(T) to
0.05, P(G) to 0.05 and P(S) to 0.02. These parameters are
identical for each KC. The BKT_random and BKT_human
parameters were estimated using the BKT module on Learn-
Sphere [9]. The human-based parameters were obtained
from fitting BKT to the “Fraction Addition and Multipli-
cation” dataset accessed via DataShop (Koedinger et al.,
2010). The random-based parameters were obtained from
fitting BKT to the log data generated from simulated stu-
dents in the Random condition.

To support the use of DKT within online master learning,
we created our own implementation using PyTorch’s LSTM
module." Based on prior work [8], the model has 200 nodes
in the hidden layer, uses a dropout of 0.4 during training,
and uses a batch size of 5 (our sequences were longer than
those in prior work, so a smaller batch size works well). This
implementation supports the ability to fit DKT to data pre-
sented in standard DataShop [9] format. Trained models
have a simple interface for use in online knowledge tracing
settings. Similar to BKT, we fit DKT to the log data gen-
erated from simulated students in the Random condition to
estimate model parameters.

3.2 Simulation Studies and Evaluation

During the experiment process, we created 30 simulated stu-
dents for each of the six conditions and analyzed the data
that they generated. For these experiments, we created a
KC model that labels each step as a combination of “Prob-
lem Type” and “Selection”. There are 14 unique KCs in
our analysis, 8 for Add Different, 3 for Add Same and 3
for Multiplication. As the Additive Factors Model (AFM)
is often used to examine learning curves from existing data
[1], we used pyAFM [12] (a python implementation of AFM)
to predict the probability that students will get a next step
with the respective skill correct at the end of their practice.
This provided an independent means for us to estimate how
well each knowledge tracing approach did at appropriately

!Open-source code for the model is available here:
https://gitlab.cci.drexel.edu/teachable-ai-lab/dkt_torch.

recognizing when students had achieved mastery.

1.00 -
0.90 -
0.80
0.70 {4
0.60 -
0.50 1 |
0.40 -
0.30 -

0.20

0.10 -

ot N}

0.0“ s o L elin,yya®® - U 'o'e'e® 0 3 U
1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

«Random -=Streak ==BKT_ranodm <=DKT_random

Figure 2: Learning curves for four conditions.

The AFM model assumes that performance monotonically
converges to zero error in the tail. However, both humans
and simulated students have non-zero error in the tail of
their learning curve. This violation of the AFM model’s as-
sumption causes the model to estimate lower learning rates
in order to accommodate non-zero error in the tail. We
found that because the simulated students sometimes get a
much larger number of practice opportunities than human
students (e.g., 80 vs. 30 practice opportunities), the bias
in AFM’s learning rates was non-trivial. To address this
challenge, we utilized the Additive Factors Model + Slip
(AFM+S) approach [12], which explicitly models non-zero
error rates in the tail using additional “slipping” parameters
for each KC. The AFM+S model better fit the simulated
student data from all six conditions than the AFM model
(three fold cross-validated RMSE = 0.240 vs. 0.257). Quali-
tatively, we found that the AFM+ S learning curves seemed
to better fit the data, particularly for slopes at the beginning
of difficult to master skills.

4. SIMULATION RESULTS
4.1 Online Knowledge Tracing Results

Figure 1 shows the numbers of problems administered by the
tutoring system in each condition. Random always gives
all 80 problems each type. Streak gives around 17 prob-
lems for AD, 10 problems for AS and 9 problems for M.
BKT_default gives around 11 problems for AD and 6 prob-
lems for AS and M. BKT_random has the similar statis-
tics to the BKT_default, while BKT_human gives around
14 AD problems, 9 M problems and around 6 AS problems.
DKT_random gives around 78 AD problems, almost as many
as Random; however, it gives less than 3 problems in AS
and M. The number of problems given by BKT _human is
slightly higher than those given by BKT_random. We hy-
pothesize that this is because the BKT_random parameters
were fit specifically to the simulated students, so when used
for knowledge tracing they provide better estimates of mas-
tery than the the BKT_human parameters.

To get a better sense of the overall differences between Ran-
dom, Streak, BKT (BKT_random), and DKT, we plotted
the overall learning curves for the data from these condi-
tions, see Figure 2. We can see from this figure that BKT

1.00

0.80

0.60

0.40

0.20

0.00 +
AD Left AD Left AD Right AD Right AD Answer AD Answer AD Convert AD Done AS Answer AS Answer AS Done M Answer M Answer M Done
Convert Convert Convert Convert Numerator Denominator Checkbox Numerator Denominator Numerator Denominator

Numerator Denominator Numerator Denominator

® Random Streak ®BKT_default ®BKT_random ®BKT_human

DKT_random

Figure 3: The AFM+S predicted probability at the end of training for each KC averaged over all students.

stops giving practice earlier than Streak, which subsequently
stops giving practice earlier than Random and DKT. We
observe higher variance in the tail of the learning curves for
BKT and streak because the total number of students is
decreasing as each student reaches mastery.

We applied the AFM+S model to predict performance on
a hypothetical next opportunity for each KC and student.
Figure 3 shows the average predicted correctness (across stu-
dents) after the final practice opportunity for each skill. For
most KCs, the prediction is higher than 95%, which sug-
gests that mastery has been obtained in these KCs. Unfor-
tunately the KC “AD Answer Denominator” has the lowest
overall next-step correctness prediction in all six conditions.
Figure 4 displays the learning curve for this skill across all
six conditions and the number of students that have not
yet mastered the skill at each point. This graph shows that
there is a high slipping rate for this particular skill (see green
line), indicating that there is a ceiling on the best possible
AFM+S prediction that can be achieved.

10

—— Actual Data
— AFM+S

0.8

0.6 4

Error

0.4 1

0.2 4

0.0

of Obs.
=
(=]
=1
|

o
I

0 10 20 30 40 50 60 70 80
Opportunities

Figure 4: Learning curve for “AD Answer Denominator” and
number of unmastered students at each opportunity.

Conditions AD Average | AS Average | M Average
Random 0.01 0.01 0.01
Streak 0.06 0.11 0.12
BKT_default 0.09 0.16 0.16
BKT_random 0.10 0.17 0.15
BKT_human 0.08 0.16 0.12
DKT_random 0.01 0.30 0.31

Table 1: Model efficiency scores across six conditions.

To evaluate how well each approach handles the trade off be-
tween maximizing student’s performance while minimizing
the amount of practice, we computed a metric that we call
“efficiency”, see Table 1. To compute the score, we divided
the AFM+S predictions at the end of training by the num-
ber of opportunities the student received for each student
and KC. We then averaged over students to get a score for
each KC. Finally, we averaged over KCs within each prob-
lem type. This produced, 3 model efficiency scores for each
of the six models. Bigger value refers to a more efficient
model. The efficiency score complements accuracy and pro-
vides more information for selecting the best model.

Although Random gives the highest prediction in Figure 3
among all KCs, it is the least efficient one as it gives all
the problems during training. BKT_random has lower pre-
dictions than Streak, however the model efficiency suggests
that it is more efficient. DKT_random yields the same effi-
ciency as Random in AD problems. However, for AS and M
problems, it appears to have the highest efficiency across all
six models since it takes the least practice, but still achieves
a moderate correctness prediction.

4.2 Simulated vs. Human BKT parameters

To validate the feasibility of generating BKT parameters
using simulated student data, we did a correlation analysis
of the BKT_random and BKT_human parameters. Figure
5 shows that there’s a positive correlation of around 0.65
in the “Learn” parameter, which means the simulated stu-
dents generated by Apprentice Learner have a similar learn-
ing rate as human students. We argue that this is one of the

=
o

y=0.6541x + 0.0946

08 R?=10.2938
£0.7
g
206
g -
E -
& -
205 -
E ° _-
204 _--
g 2-- °
203 e -~
o .~ - L]
0.2 o _-
>
° °
0.1 °

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
BKT_random parameters

Figure 5: Positive correlation in the BKT “Learn” parameter
values estimated from simulated and human data.

harder parameters to set. The “Known” parameter (P(Lo))
was near 0 for all skills in the simulated data because all
agents start off without any prior knowledge. In human
data, this parameter will vary based on the learning context.
The “Guess” and “Slip” parameters based on the simulated
data were reasonable (both greater than 0), but exhibited
no notable correlation with the human guess and slip values.
Taken together, we argue that this approach is a promising
way to identify initial parameter values for BKT, but more
research is needed to explore and generalize this idea.

4.3 Knowledge Tracing Sequence Analysis
Next, we take a closer look at the estimates of several knowl-
edge tracing approaches for different sequences. Figure 6
shows the correctness sequence of a single student on “AD
Answer Denominator” KC. This student was taken from the
BKT_random condition. We added the mastery predictions
generated by BKT, Streak and DKT given this sequence.
For BKT and Streak, only the correctness on this skill was
used. For DKT, the model was given the entire student se-
quence for all KCs, but only the predictions for this KC are
shown. Predictions were taken at where the student just
finished the problem that contained the target KC.

For BKT, the estimates trend towards increased mastery
over the course of practice, but sometimes the probability
decreases when it gets an item wrong. For Streak, each cor-
rect response yields a 33% increase in the mastery predic-
tion, accumulating to 100% by the third correct response in
a row. The DKT models predictions tend to jump around,
but generally do not seem to be increasing despite getting
the problem correct multiple times in a row. For example,
the model’s probability of correct jumps to 100% before re-
turning to and staying close to 0%.

wnes| | X [X | X |V | [V [X]V

BKT Mastery [0% 13% 16% 16% 72% 97% 100% 99% 100%
Streak Mastery 0% 0% 0% 0% 33% 67% 100% 0% 33%
DKT Mastery | 36% 0% 0% 100% 0% 0% 0% 2% 0%

Figure 6: Different Model Predictions on “AD Answer De-
nominator” given student correctness sequence.

To figure out why the DKT model has such erratic behavior
and why it gives so many AD problems, we fed a complete
sequence from one student into the DKT model (student
from BKT_random condition). Figure 7 shows the predic-
tion of mastery for each KC after the student has completed
each problem (problem type shown on the x-axis). It seems
that the student never masters the “AD Answer Numerator”
or “AD Answer Denominator”, which explains why the DKT
tutor is giving almost all the AD problems to the students.

Upon further investigation, we discovered that the DKT
model has a fundamental issue that makes it difficult to use
for mastery learning. The issue is caused by using the DKT
predictions between problems when the mastery learning
system is determining which KCs are mastered before pick-
ing another problem. Unfortunately, for multi-step problems
some KCs cannot be correctly applied on the first step. DKT
correctly predicts these KCs will have near 0% correctness
(any attempts will be incorrect). However, this has the side
effect of confusing the mastery learning system into thinking
that the KC is unmastered. When the DKT model actually
reaches a step where the KC can be correctly applied, then
its predicted probability jumps to a more realistic estimate
of the mastery. This problem was not identified in previous
work on mastery learning with DKT (e.g., [15]) because the
prior work only looked at problems with a single step, so
this issue never occurred. However, most problems within
tutoring systems are multi-step. Future work should explore
how to correct this issue within DKT so it can be used for
mastery learning.

AD Left Convert Numerator

AD Left Convert Denominator
AD Right Convert Numerator
AD Right Convert Denominator
AD Answer Numerator

AD Answer Denominator
AD Convert Checkbox
AD Done

AS Answer Numerator
AS Answer Denominator
AS Done

M Answer Numerator

M Answer Denominator
M Done

| ADADAD ADADAD M M M AS ASAS M ADAD AS M M M AS

Figure 7: DKT predictions for each KC after each problem.

5. SUMMARY OF KEY FINDINGS

Our first key finding is that simulated students can success-
fully evaluate online knowledge tracing models. Our simu-
lations indicate that Streak works well for mastery learning
and has reasonable efficiency; although the model gives a bit
more practice than strictly necessary (e.g. the average num-
ber of steps to master all AD KCs is around 17 in Streak and
10 in BKT_random). Still, Streak is very simple to operate,
implement, and modify and it behaves reasonably well.

BKT also work well for mastery learning and generally seems
to have the best efficiency of the approaches we compared
(although DKT seems to be more efficient for AS and M
problems). However, it seems to stop a little early in some
cases, resulting in under practice. Figure 3 shows that the
BKT_random model gets 86% correctness prediction for the
KC “AD Answer Numerator”, 73% for “AD Answer Denom-

inator” and 83% for “AS Answer Denominator”. To some
extent, it reveals that these KCs might be more difficult for
both simulated students and human students to master, and
more practice is required to obtain mastery. Our work sug-
gests that it is important to look at multiple factors when
evaluating knowledge tracing approaches in online settings.
In particular, it is important to look at both student mas-
tery and the amount of practice that is administered. To
explore this trade off, we proposed the efficiency metric. We
believe that this metric (or ones like it) might be useful for
evaluating knowledge tracing approaches in online settings.

Multiple studies [18, 17] suggest that the DKT model has
good predictive performance in offline setting. However,
we found that it does not seem to work properly for on-
line knowledge tracing, particularly in cases of multi-step
problems. Yeung & Yeung [19] identified that DKT’s pre-
dictions for KCs are not consistent across time-steps, which
we believe is related to the issue we encountered. Even when
a student performs well on a KC, DKT’s predicted perfor-
mance for that skill may drop. In general, DKT’s predictions
fluctuate drastically over time, so when its predictions are
sampled has a big impact on its accuracy. The core issue
is that DKT generates predictions for every KC at every
step, but its loss function only constrains predictions that
are likely to occur next. Yeung & Yeung suggested some
possible modifications to the DKT objective function to mit-
igate this problem, but implementation and testing of these
was beyond the scope of the current study.

In preliminary analysis, BKT estimated students reached
mastery even though their error rates were still high. Fur-
ther inspection revealed an error in our BKT model that was
causing it to incorrectly estimate student mastery. Multiple
researchers across multiple labs have used this open-source
implementation. Despite wide use, we uncovered issues that
had not been previously uncovered. Although we corrected
these issues for the current study, we argue that this is a
positive outcome for our simulated student approach. This
finding reinforces the idea that simulated students can be
used to test and improve knowledge tracing approaches be-
fore running more costly human studies.

Our second key finding is that researchers might use data
generated by simulated students to initialize knowledge trac-
ing parameters when human data is not available. To evalu-
ate the feasibility of this idea for BKT, we conducted a corre-
lation analysis between the random-based BKT parameters
and human-based parameters. We found a strong correla-
tion between the learning rate parameters suggesting that
initializing BKT parameters using simulated student data
might be an informed, but cost-effective approach.

6. RELATED WORKS

The closest work to ours is the simulation studies conducted
by Doroudi et al. [4, 3], which investigates different knowl-
edge tracing approaches using simulated students. They ar-
gue that it is important to evaluate knowledge tracing under
various assumptions about how students learn. One of the
major differences between their approach and ours is that
they use statistical models that predict correctness to simu-
late students rather than computational models of learning
that actually learn and perform the task, as we do with Ap-

prentice agents. Apprentice agents are more complex than
the knowledge tracing approaches that are being used to
evaluate them. It would be interesting to explore the use of
Apprentice agents as another kind of student model for the
knowledge tracing evaluations proposed by Doroudi et al.

7. CONCLUSIONS AND FUTURE WORK

We were able to successfully apply simulated students to
test different knowledge tracing models. When we com-
pared the three knowledge tracing models (BKT, Streak,
and DKT) to a no-knowledge-tracing baseline (Random),
we found that BKT gave the fewest problems, Streak gave
the second fewest, Random gave the most and DKT gave al-
most as many as Random in one problem type and the least
in the other two. In general, we found that BKT seemed to
be the most efficient approach, but streak gave reasonable
results despite its simplicity. Through the use of simulated
students, we also discovered a number of issues with our
BKT implementation as well a fundamental issue with DKT.
Despite widespread use of the BKT implementation and a
lot of recent investigation into the DKT model, these issues
had not been discovered in prior work. Together, these re-
sults support our primarily claim that simulated students
are an effective tool for investigating and evaluating online
knowledge tracing approaches.

Our analysis also found evidence to support the idea that
simulated student data might be used to initialize BK'T pa-
rameters when no human-student data is available. In par-
ticular, we found that BKT learning rates estimated from
simulated data have a significant correlation to the learning
rates estimated from human data. While these initial results
are promising, more work is needed to further explore these
ideas. In particular, we would like to try running human-
subject experiments to compare BKT models initialized us-
ing simulated student data to those with default parameters.
One surprising finding is how well BKT_default performs;
despite somewhat arbitrary parameters, it was more efficient
than Streak. Future work should explore how to manually
pick robust default values for BKT.

We have a number of additional future directions we would
like to explore. We intend to individualize the Apprentice
models to make them better mimic the behaviors of dif-
ferent kinds of learners (e.g., high vs. low performing stu-
dents), students with different motivation in learning, and
those who suffer from learning disabilities. We should also
explore variations of DKT that address concerns we have
identified and enable its use in online mastery learning. Fi-
nally, we should move beyond simulation and explore how
well our simulated students predict which knowledge tracing
approaches will yield the best learning for human students.

8. ACKNOWLEDGMENTS

We would like to thank Danny Weitekamp and Erik Harp-
stead, who developed much of the framework for testing the
Apprentice agents within the fractions tutors. We also thank
Anna Raffery for creating the framework for applying knowl-
edge tracing to simulated students and developing the initial
version of Bayesian Knowledge Tracing that we used. We
also thank Adit Gupta for reading earlier drafts and provid-
ing suggestions for improvement.

References

1]

2]

[11]

[12]

H. Cen. Generalized Learning Factors Analysis: Im-
proving Cognitive Models with Machine Learning. PhD
thesis, Carnegie Mellon University Pittsburgh, 2009.

A. T. Corbett and J. R. Anderson. Knowledge trac-
ing: Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction, 4(4):253—
278, 1994.

S. Doroudi, V. Aleven, and E. Brunskill. Robust evalu-
ation matrix: Towards a more principled offline explo-
ration of instructional policies. In Proceedings of the
Fourth ACM Conference on Learning@Scale, pages 3—
12, 2017.

S. Doroudi and E. Brunskill. Fairer but not fair enough
on the equitability of knowledge tracing. In Proceed-
ings of the 9th International Conference on Learning
Analytics € Knowledge, pages 335-339, 2019.

S. E. Fancsali, T. Nixon, and S. Ritter. Optimal and
worst-case performance of mastery learning assessment
with Bayesian knowledge tracing. Proceedings of the 6th
International Conference on Educational Data Mining,
EDM 2013, 2013.

T. Gervet, K. Koedinger, J. Schneider, T. Mitchell,
et al. When is deep learning the best approach to knowl-
edge tracing? Journal of Educational Data Mining,
12(3):31-54, 2020.

N. T. Heffernan and C. L. Heffernan. The assistments
ecosystem: Building a platform that brings scientists
and teachers together for minimally invasive research
on human learning and teaching. International Journal
of Artificial Intelligence in Education, 24(4):470-497,
2014.

M. Khajah, R. V. Lindsey, and M. C. Mozer. How deep
is knowledge tracing? Proceedings of the 9th Interna-
tional Conference on Educational Data Mining, EDM
2016, pages 94-101, 2016.

K. R. Koedinger, R. S. Baker, K. Cunningham,
A. Skogsholm, B. Leber, and J. Stamper. A data
repository for the edm community: The pslc datashop.
In Handbook of Educational Data Mining, volume 43,
pages 43-56. CRC Press, 2010.

C. J. MacLellan, E. Harpstead, R. Patel, and K. R.
Koedinger. The apprentice learner architecture: Clos-
ing the loop between learning theory and educational
data. Proceedings of the 9th International Conference
on Educational Data Mining, EDM 2016, pages 151—
158, 2016.

C. J. MacLellan and K. R. Koedinger. Domain-general
tutor authoring with apprentice learner models. Inter-
national Journal of Artificial Intelligence in Education,
pages 1-42, 2020.

C. J. MacLellan, R. Liu, and K. R. Koedinger. Ac-
counting for Slipping and Other False Negatives in Lo-
gistic Models of Student Learning. Proceeding of the 8th
International Conference on Educational Data Mining,
EDM15, pages 53-60, 2015.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

P. Nedungadi and M. S. Remya. Predicting stu-
dents’ performance on intelligent tutoring system - Per-
sonalized clustered BKT (PC-BKT) model. Proceed-
ings - Frontiers in Education Conference, FIE, 2015-
February(February), 2015.

R. Patel, R. Liu, and K. R. Koedinger. When to block
versus interleave practice? evidence against teaching
fraction addition before fraction multiplication. In Pro-
ceedings of Cognitive Science Conference, 2016.

C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. Guibas, and J. Sohl-Dickstein. Deep knowledge trac-
ing. In Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1,
NIPS’15, page 505-513, Cambridge, MA, USA, 2015.
MIT Press.

J. Rollinson and E. Brunskill. From predictive models
to instructional policies. Proceedings of the 8th Interna-
tional Conference on Educational Data Mining, EDM
2015, pages 179-186, 2015.

L. Wang, A. Sy, L. Liu, and C. Piech. Deep knowledge
tracing on programming exercises. In Proceedings of
the Fourth ACM Conference on Learning@Scale, pages
201-204, 2017.

X. Xiong, S. Zhao, E. G. Van Inwegen, and J. E. Beck.
Going deeper with deep knowledge tracing. Proceed-
ing of the 9th International Conference on Educational
Data Mining, EDM 2016, pages 545-550, 2016.

C.-K. Yeung and D.-Y. Yeung. Addressing two
problems in deep knowledge tracing via prediction-
consistent regularization. In Proceedings of the Fifth
Annual ACM Conference on Learning@Scale, pages 1—
10, 2018.

M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
Lecture Notes in Computer Science, volume 7926 LNAI,
pages 171-180, 2013.

