
Design Computing and Cognition DCC’12. J.S. Gero (ed), pp. xx-yy.

© Springer 2012

Beyond Function-Behavior-Structure

Mahmoud Dinar, Chris Maclellan, Andreea Danielescu, and Jami

Shah

Arizona State University, USA

Our research is investigating the relationship between design problem for-

mulation and creative outcome. Towards that goal we have conducted ex-

periments with designers engaged in problem formulation. In order to ana-

lyze such empirical data, a formal representation is needed. One popular

model is the Function-Behavior-Structure (FBS) model and its several va-

riants. Our problem map (P-map) model shares many common features

with FBS but also many differences. A symmetric hierarchical representa-

tion is introduced not only in each of the three domains (F, B, S) but in ad-

ditional domains (requirements and issues). Generic inter and intra-domain

relationships between these entities are also identified in addition to op-

tional attributes of the entities, leading to a more expressive and flexible

model that is domain independent and well suited for representing problem

formulations of designers with different expertise levels and creativity.

The model has been used for coding protocol data in a formal predicate

logic language (Answer Set Programming).

Introduction

The main objective of our research is to investigate how design problem

formulation is related to creativity. We have conducted exploratory proto-

col studies with designers engaged in problem formulation. In order to

analyze such empirical data and utilize further investigations, a formal re-

presentation and a more efficient data collection method are needed.

We began by creating a model based on the observations from an ex-

ploratory protocol analysis [1]. We identified some entities in problem

formulation such as function, component, analogy, question etc. Instances

of each entity appeared in order of emergence with unique tag names and

 M. Dinar, C. Maclellan, A. Danielescu and J. Shah 2

wherever there was a relation between two instances of two different enti-

ties, a line was drawn to show the link. The first model suffered from an

incoherent grouping of entities and specific relation types. In the second

version, we modified the model to capture more specific relationships. We

have called our model the Problem map (P-map) [2].

We were concerned mainly with two aspects of the framework we built

our model in: the ontology, i.e. the entities, their attributes, and the rela-

tionships among them; and the formalism for representing the data. In de-

fining the entities we looked at other well-known models in design re-

search. One popular model is the Function-Behavior-Structure (FBS)

model [3] and its several similar variants such as the SBF model [4] and

the Functional Representation model [5].

In an ongoing effort to capture pathways of problem formulation to-

wards creative design, we have changed both the ontology and the notation

in our P-map from the previous version. Even though our model has

shared many common features with FBS, it has many differences. These

differences arise from potential ways of improving FBS to be incorporated

in new avenues in design research, especially pre-ideation stages, i.e. prob-

lem formulation. We focus on improving flexibility, representation of hie-

rarchical structure, and expressiveness of the model. We use Answer Set

Programming (ASP) [6], a formal predicate logic language, for representa-

tion.

Function-Behavior-Structure models

FBS is an established framework in design research that has prompted a

great body of work within the past two decades since its introduction. The

concepts of the model, namely the main three entities and the relations

among them, were not unfamiliar themes in engineering design. Around

the same time Gero [3] published his seminal paper, Gui [7] for example

proposed a scheme for representing mechanical components and assem-

blies that used predicate logic to describe function, behavior and structure

in an object model.

The extensive work related to FBS in engineering design research de-

serves a dedicated survey to the subject. However, a few useful critiques of

the model help to that end. Dorst and Vermaas [8] take a dialectical stance

and follow the changes in the definitions in the FBS model in three papers

of Gero’s work. They search for distinctions between intentional descrip-

tions of artifacts and structural descriptions, and conclude that the changes

proposed to improve or clarify the definitions were actually prompted by

 Beyond Function-Behavior-Structure 3

changes in the objectives that the model was supposed to serve. They ar-

gue that the shift from a descriptive model to a prescriptive model was a

source of ambiguity. Gero did not seem to claim that his model laid focus

on either of the directions in his research. If the model can be used to both

ends, that should be considered an advantage of it. In our research we have

tried to create a flexible model of design, however, we too do not claim

that our model can be used in all phases of the design process, for all types

of design problems, or solely for descriptive or prescriptive models.

Galle [9] finds the modified definitions that Dorst and Vermaas propose

incomplete because they refer to an artifact that does not yet exist. Al-

though he supports the separation of intentional and non-intentional con-

cepts and the addition of purpose in their modified FBS, he offers two dis-

tinct definitions for FBS. On the one hand he defines a nominalist model

that is purely logical and symbol-oriented. On the other hand the realist

model sees design and thus FBS as a mathematical abstraction of experien-

tial knowledge about the behaviors that embody structure in terms of ma-

terial objects.

Besides FBS, other variants of the model have been developed indepen-

dently. The most noteworthy of these variants are the Functional Represen-

tation (FR) and SBF models. Chandrasekaran [5] developed FR as a lan-

guage which described the function of an artifact in terms of causal

processes in order to simulate, diagnose or explain how the artifact works.

In his later work with Josephson [10], he added an environment-centric

view in addition to the original device-centric view to allow for more pre-

cise ways of representing design knowledge. In describing how FR can

benefit from attempts in finding a common functional modeling (FM) on-

tology [11, 12], he argues that artificial intelligence research that aims to

model artifacts can lend FM becoming a more formalized representation

[13].

Goel et al. [4] have developed the SBF modeling language for a teleo-

logical description of complex systems. In this language, structure, beha-

vior and function are represented in terms of components and their connec-

tions, transitions among a sequence of states, and pre- and post-conditions

respectively. The syntax is similar to notations that are used to represent

production rules. The model is a top-down description scheme, in which

each fragment of the model is defined by a lower level fragment. At the

top there is an instance of SBF while at the bottom there are the building

block fragments such as strings and integers. For example, an element (or

in other words a component in a structure model) is defined by an integer

Id, a string name, a string description, an optional set (can have zero num-

ber of fragments) of property, and an integer subelement Id.

 M. Dinar, C. Maclellan, A. Danielescu and J. Shah 4

FBS has mainly been used in modeling the design process, protocol

analysis, and design automation. Gero [3] identified activities in the design

process in terms of transformations from one of the three domains to

another, considering a difference between expected and actual behavior.

For example, transforming a function to an expected behavior is consi-

dered formulation or specification. Gero and Kannengieser [14] took into

account the dynamic character of design by considering the notion of situa-

tedness. They extended FBS further to the explicit modeling of design

processes [15]. Howard et al. [16] adopted FBS to describe a creative de-

sign process proposed by integrating engineering design process views and

creativity from the standpoint of cognitive psychology.

Just as FBS has been used as an attempt to create a common consensus

among design researchers in defining fundamental concepts, it has also

been used as a coding scheme in analyzing protocol studies [17–19]. The

application of such ontological description has been extensively used in

developing design automation. Umeda et al. [20] proposed a computer tool

Function-Behavior-State Modeler for supporting synthesis in the concep-

tual design stage. Anthony et al. [21] integrated engineering knowledge as

a description of function and behavior with a semantically annotated repre-

sentation of 3D graphical models. For a list of some design automation

systems that have used SBF see Goel et al. [4]. Maher and Gomez de Silva

Garza [22] also provide examples of application of FBS in case-based rea-

soning tools in design.

Aspects to consider in improving the model

Inspired by the FBS framework, we realized that we should consider a few

aspects to change in order to capture the problem formulation space more

efficiently. We explain why FBS needed flexibility, hierarchy and expres-

siveness.

Flexibility

Dorst and Vermaas [8] argue that the changes in the definition of the

entities in FBS were made mostly to accommodate a distinction between

an intentional and a structural purpose of a design. One might argue that

adhering to such distinction may not offer significant advantages in defin-

ing reasoning mechanisms. Moreover, design activities are often separated

from manufacturing. It is convenient to assume design ends with a docu-

ment that specifies design, as Gero assumed in [3]. However, regardless of

the difference in how intended or actual behavior achieves a function, not

 Beyond Function-Behavior-Structure 5

all of what is expected from a design can be solely defined in terms of its

functions. Consider the example of designing an artifact that moves a load

from one point to another: if one ignores the conditions of the environ-

ment, load capacity and distance should still be specified. Such require-

ments are obviously, not functional requirements.

Umeda et al. [23] stated that function, structure and behavior represent a

high to low level of abstraction, respectively, that is, the emergence of be-

havioral descriptions follow that of the structure and function monotonical-

ly and away from abstract concepts. However, this is not always the case

in design practice. For example, a behavior is not always expressed in

terms of rigid mathematical equations. Sometimes the designers’ know-

ledge resembles qualitative physical expressions. For example the designer

may only be aware of an existing relationship among different parameters

without knowing the specifics of that relation. A more flexible model al-

lows the abstraction of each of these entities.

Additionally, in real life experience, design data fragments do not ap-

pear monotonically. If there were attributes that defined the entities in FBS

models, rarely are these attributes completely filled once a new instance of

an entity is added. In the SBF modeling language [4] there is an extensive

description of each entity and some of the attributes are optional sets.

However it seems the addition of new attributes in an instance of an entity

alters the initial object entirely.

Hierarchy

The ability to flexibly represent a hierarchical structure is instrumental

to modeling complex and evolutionary systems [24]. Products are getting

ever more complex and design is inherently an evolutionary process [25,

26]. In addition, hierarchies often help define levels of abstraction. Design

studies also agree that designers move among different levels of abstrac-

tion intermittently during design [27, 28]. As explained before, the need

for flexible representation of different levels of abstraction is necessary in

capturing problem formulation data. Abstraction is not limited to different

entities but also in a hierarchy of any of the entities. The hierarchical struc-

ture spans all the main entities. Requirement elicitation is as common an

approach in design as functional decomposition is. Artifacts especially in

complex and adaptable designs have a hierarchical structure, where some-

times components are independent modules. Therefore a model in the FBS

framework that is restrained to function, behavior, and structure descrip-

tions without representing compositions and multiple levels of abstraction

at each entity, is not sufficient.

 M. Dinar, C. Maclellan, A. Danielescu and J. Shah 6

Expressiveness

Gero and Kannengieser [29] state that FBS ontology is a high level

model. FBS still can benefit from a more elaborate definition of attributes

to enhance its expressiveness. Parametric relations for example can be de-

scribed in more detail in behavior at different levels of abstraction, i.e. in

terms of mathematical expressions, qualitative models, or unknown rela-

tions as explained before.

As stated earlier about there is a need for a more flexible model to ex-

plicitly expressing non-functional requirements. Other details such as the

importance of the requirements (e.g. in terms which are often used such as

musts and wishes), their sources (e.g. customer needs, regulations, condi-

tions of the operating environment), and the mating conditions among

components help improve capturing more of the formulation space and

thus opening potential ways for the discovery of paths to creative outcome.

Our proposed model

To address the points we made above, a symmetric hierarchical representa-

tion is introduced not only in each of the three domains (F, B, S) but in ad-

ditionally proposed domains, which are requirements and issues. We use

the term artifact instead of structure to reserve the term hierarchy as a

common characteristic of all of the main domains in the model, and to em-

phasize domain independence.

Although modeling design processes is not our objective, it is conve-

nient to explain our model following a typical design process. All new de-

signs start with explicitly specified requirements, which include what the

artifact is supposed to do (its main or highest level function); the perfor-

mance levels desired (technical specifications) and overarching design

goals. To that, the designer applies his domain knowledge which includes

procedural knowledge (functional decomposition, search strategy, etc.) and

artifact knowledge (candidate solutions, physical laws governing beha-

vior). From an analysis of the requirements the designer may gain key in-

sights, particularly in the discovery of problematic issues. This is consis-

tent with our earlier observations [1, 2].

From these observations we can say that at the most general level, prob-

lem definition elements can be grouped into the following categories: Re-

quirement, Function, Artifact, Behavior, and Issue. The groups are built

around base entities and their hierarchical structure in terms of upper-

lower level, and preceding-succeeding entities. The base entities in func-

tions, requirements, and issues share the name of the group. In addition to

 Beyond Function-Behavior-Structure 7

the hierarchies and the directional (sequential) or non-directional relations

among them there are supporting entities such as parametric relations un-

der the group Behavior. All groups except the Issue group are related with

bidirectional relations, while the Issue group can have a relation to any

combination of the rest of the entities. Before we explain the details of our

model any further we should talk about the formalism that we used for our

representation. Notice that entity names are italicized in lower case while

group names are in upper case.

The formalism

The improved P-map model has been utilized to code protocol data,

which necessitates the use of a consistent formalism. The formalism that

we chose to encode P-map data was Answer Set Programming (ASP) [6].

ASP, a non-monotonic declarative logical programming language, is theo-

retically based on Answer Set semantics [30]. Similar to Prolog, Answer

Set Programs consist of two main components: facts, which are the ground

literals over which the system reasons, and rules, which are used to per-

form logical reasoning over the facts. An Answer Set Program solver finds

all of the answer sets which are entailed by the given set of facts and rules.

Similarly, our answer set representation is a simple way to codify protocol

data. On the other hand, our answer set representation provides a means to

reason about the coded P-maps. For this paper, we focus solely on

representing protocol data in a concise way. Our primary reasons for

choosing Answer Set Programming were the simplicity of the logical for-

malism, the direct mapping between the P-map and an Answer Set repre-

sentation, and the ease with which we could perform automated reasoning

over the represented P-map.

The main ingredient of the answer sets are the predicates. A predicate is

represented with a tag name followed by braces in which there are the val-

ues of the attributes that define the predicate. Since ASP representation is

declarative and monotonic, only the mandatory attributes of an entity re-

side in the predicate that define it. For example, a solution principle which

is one of the entities in the Artifact (S in FBS) group, is represented as:

solutionPrinciple(<Id>,<description>)

When used, the actual values would be substituted into the Id and de-

scription spots. The IDs (which are unique) start with two letters corres-

ponding to an entity. In an example that shows a design of an airplane seat

that can be automatically turned into a bed, a solution principle may look

like this:

 M. Dinar, C. Maclellan, A. Danielescu and J. Shah 8

solutionPrinciple(sl_telescope,"pads inserted into one another come out

of the seat")

As another example, consider the function, which is the main entity of

the Function group. To keep the model simpler, the Ids are attributes that

may represent the entity in their own right. The Id for a function is taken as

its action verb:

function(fn_moving_to_flat_position)

In addition to these main components, there are a number of supporting

predicates, some of which are common among several groups. The hierar-

chical structure is defined by:

parentOf(<parent>,<child>,<hierarchy>)

Sequences are defined by:

before(<preceding>,<succeeding>)

A functional decomposition for the airplane seat example is presented as

follows:

function(fn_supporting_sleeping)

function(fn_moving_to_flat_position)

function(fn_supporting_in_flat_position)

parentOf(fn_supporting_sleeping, fn_moving_to_flat_position,hy_fn1)

parentOf(fn_supporting_sleeping, fn_supporting_in_flat_position,

hy_fn1)

before(fn_moving_to_flat_position, fn_supporting_in_flat_position,

hy_fn1)

The hierarchy Id is used to allow for disjunctive decompositions and

make the model more flexible.

The entities

In all the five groups there is a hierarchical structure. In the function

group, the hierarchy is evident in functional decompositions. Our model

incorporates disjunctive composition, making it possible to have multiple

functional decompositions using common sub-functions.

 Beyond Function-Behavior-Structure 9

 In the artifact group, the product architecture is a hierarchy of physical

embodiments and solution principles. Our model also allows partial com-

positions of solution principles and physical embodiments, since in reality,

the designer follows different parts of the sub-solutions at different times

corresponding to different levels of abstraction. Similarly in the require-

ment group, requirements and goals can participate in the same hierarchy.

In the behavior group, a physical effect is a hierarchy of physical laws.

Physical effects may be expressed by parametric relations, which are com-

posed of sets of parameters. In the issue group, the hierarchy entails the

priority the designer gives to the issues that should be addressed, that may

correspond to their problem solving strategy. The ontology of our P-map

model can be seen in Figure 1 in terms of Barker notations [31].

Figure 1. The ontology of the P-map model

As it can be seen, the names that are given to the hierarchies are differ-

ent in some groups to reflect common terminology in design correspond-

ing to the same data structure. In the Artifact group, the product architec-

ture is the hierarchical structure accommodating a composition of physical

embodiments, i.e. components, and solution principles. The connection

entity represents mating conditions among components and since it is a

 M. Dinar, C. Maclellan, A. Danielescu and J. Shah 10

non-directional sequence, a different predicate from the before predicate,

defined as connects(<em_Id/sl_Id>,<em_Id/sl_Id,hy_Id>), is used for it.

We explain the additional entities to the FBS model, i.e. requirement

and issue, and the inter-group relations in more detail.

Requirements

Different definitions and interpretations of FBS have tried to place the

intention or the purpose of the design along the lines of any of the three

domains [8]. Design problems, however, are different in that they do not

always start with a known functional decomposition that requires a search

for components for each function, or with known components that should

be adapted to accommodate new functions. Requirements, especially in the

design of novel products for specific customer needs, should be explicitly

identified.

A design problem is usually given as a design brief or problem state-

ment. The design problem, however, is defined with additional require-

ments elicited by the designer. Therefore, the problem is specified by a set

of design goals and requirements. A desired design is one that realizes all

the requirements and achieves better design goals. In our model, the set of

design requirements and goals is defined as follows:

requirement(<Id>)

requirementSource(<rq_ Id> ,< source>)

goal(<Id>)

goalImportance(<gl_ Id> ,< importance>)

goalTarget(<gl_Id>,<target>,<improvement_direction>)

The source can be defined by specific tag names that might be set for

the user to choose from: "safety", "aesthetics", "ergonomics",

"use_environment", "affordance" etc. The source might also specify

whether the requirement was explicitly given in the problem statement or it

was discovered by the designer.

We assume that requirements are binary; they are either met or not met.

Goals on the contrary are defined with their importance level and the tar-

gets with ranges of values that should be achieved. They might have a sin-

gle bound or be discrete. There is usually a relation between the level of

satisfaction in using the solution and the degree to which the goal is

achieved in terms of a utility function. The improvement direction can take

one of the three values: "more", -the goal is desired to be more than the

 Beyond Function-Behavior-Structure 11

given target; "less", - the goal is desired to be less than the given target;

"about", - the goal is desired to be as close to the given target as possible.

Issues

An issue is a point that the designer believes to be pivotal or problemat-

ic in achieving a design objective. An issue can arise in realizing a func-

tion with a specific artifact or behavior, in realizing conflicting design

goals such as lower weight and strength of a structure or in accommodat-

ing different components in a product architecture due to incompatible in-

terfaces to name a few. Issues, therefore, can be seen as intimately related

to the other domains. The designer gains insight in the discovery of key is-

sues in the design and the areas of the design that should be prioritized.

The hierarchy of issues may represent problem solving strategy. To avoid

repeating the same example, we show this hierarchal structure in the next

section when we talk about the relations. A list of entities and their

attributes in addition to corresponding entities from the FBS framework

are given in Table 1.

Table 1. A summary of entities and their attributes

Group Entities Attributes Corresponding

to FBS

Requirement Requirement

Goal

Id, importance, source,

domain

Id, importance, target,

direction

Purpose/

Function

Function Function Id, parameter Function

Artifact Solution principle

Physical embodiment

Parameter

Id, description, do-

main

Id, parameter

name, unit, value

Structure

Behavior Behavior

Parametric relation

Id, domain

Id, equation, abstrac-

tion level, parameter

Behavior

Issue Issue Id, description ------------------

Distinct relations

Generic inter and intra-domain relationships between these entities are

also identified in addition to optional attributes of the entities. This leads to

a more expressive and flexible model that is domain independent and well

 M. Dinar, C. Maclellan, A. Danielescu and J. Shah 12

suited for representing problem formulations of designers with different

expertise levels and creativity. Table 2 shows the inter-group relations

among entities.

Table 2. Inter-group relations

Entity Relation Entity

Function satisfies Requirement

Artifact fulfills Requirement

Behavior manages Requirement

Artifact realizes Function

Artifact parameterizes Behavior

Behavior controls Function

Issue relates All entities and their combinations

Issues can be related to any combination of other entities. For the air-

plane seat example, design issues in our model can be represented as the Id

for an issue starts with iu and the Id for a physical behavior starts with ph):

issue(iu_comfortable_support_at_flat_position,"deflection")

issue(iu_covering_length_at_flat_position,"increasing number of box-

es")

issue(iu_support_weight_at_flat_position, "load on a cantilever causes

high bending stress")

relates(iu_comfortable_support_at_flat_position,

fn_supporting_in_flat_position)

relates(iu_covering_length_at_flat_position,

rq_length_of_seat_cushion_less_than_20in)

relates(iu_covering_length_at_flat_position, sl_telescope)

relates(iu_support_weight_at_flat_position, ph_bending_stress)

relates (iu_support_weight_at_flat_position, rq_support_250lb_weight)

relates (iu_support_weight_at_flat_position, sl_pivoting_recliner)

paren-

tOf(iu_comfortable_support_at_flat_position,iu_covering_length_at_flat_p

osition, iu_hy1)

 Beyond Function-Behavior-Structure 13

paren-

tOf(iu_comfortable_support_at_flat_position,iu_support_weight_at_flat_p

osition, iu_hy1)

before(iu_support_weight_at_flat_position,

iu_covering_length_at_flat_position, iu_hy1)

Discussion

The main objective of our research is to discover the relation between

problem formulation and creative design. Design has common cognitive

characteristics to human problem solving [32]. Newell and Simon [33] de-

scribed a computational framework for studying cognitive aspects of hu-

man problem solving in terms of states, operations and goals. Though it is

plausible to create models to investigate all cognitive aspects of design, it

might be more efficient to focus on parts of them. We focus on modeling

problem formulation states and we believe that our P-map model can be

useful for such purpose.

In real life, design is not monotonic or procedural. The designer at each

step of the design may think about new solution principles, using alternate

behaviors and corresponding functions, or add new requirements. A bene-

fit of implementing a declarative computational framework for our repre-

sentation is that partial data fragments can be added and deleted without

worrying about consistency.

What can the P-map be used for

In line with our research objectives, we intend to improve our method of

empirical investigation. Additionally, we are searching for pathways that

lead towards creative design by comparing problem formulations of de-

signers of different expertise and creativity levels.

We are building an interactive tool for collecting data about solving de-

sign problems, in our P-map format. The tool is not the focus of this paper.

In our earlier work, we have tried to find a representation that captures

differences among how designers formulate problems in terms of changes

in data fragments over time, i.e. formulation states. At this point, we are

not making any hypothesis about the relation between creativity and for-

mulation. Our P-map model, however, can help achieve this goal by pro-

viding a fine level analysis tool. Some possible examples, inspired by our

earlier discoveries [2] may point to finding patterns in the sequence of the

 M. Dinar, C. Maclellan, A. Danielescu and J. Shah 14

way solution principles and parameters emerge. Another example is the

coverage of issues; in other words, one might argue that the less entities re-

lated to an issue, the less justified it is, leading to less creative design or an

unnecessary inhibition.

When encoding P-maps in an Answer Set formalism, all of the various

entities and connections between them are represented as facts. A given

Answer Set representation of a P-map by itself will contain no rules. This

means that when querying the set representation of a P-map with a solver,

only one answer set is returned, the answer set containing the facts that we

gave our system. In future work, rules could be developed which govern

how the system should reason over the P-map. This will result in more in-

teresting behavior when executing the answer set program. An example is

the number of different solution principles that have mathematically ex-

pressed behaviors that satisfy all the requirements. Another example is the

unresolved issues that may in essence be inhibitory. This means that the

designer considers an issue in a narrow view e.g. in satisfying a require-

ment by a solution principle without understanding that there is a related

behavior that should be examined as well.

How can the P-map be examined and validated

We propose a data model to capture problem formulation in design in

the form of a sequence of state representations. There are two aspects for a

data model, formalism and content.

Developing formalism imposes requirements on a data model. We de-

scribe some of the requirements that we set for our data model.

Domain independence

The model should not be limited to representing a specific class of ob-

jects. For example, it should accommodate the design of a combustion en-

gine with its known behaviors, or an engine with a general function of

providing power, including but not limited to a solar-powered engine. We

focus on mechanical devices in our examples but they may have electron-

ics and software.

Compactness

The model should have a simple and compact representation. This is a

relative measure but it provides hints for including some entities with simi-

lar properties in the same group or class. For example, we consider safety

and ergonomics as requirements. We need to incorporate our model in a

software tool, or translate it to/from a textual configuration such as ASP,

hence compactness.

 Beyond Function-Behavior-Structure 15

Richness

We want to show creative vs. non-creative designer problem formula-

tion and we assume we can capture that in comparing their P-maps. Thus

our data model should not only be compact enough to be easily created or

translated, but also it needs to be rich enough to provide such contrasts.

Unambiguity

We need a formalism that can be communicated among interpreters who

will code problem formulation data in design. Though there may be differ-

ences in labeling the data, a design episode should lead to close enough P-

maps for different coders. Thus the entities should be semantically distinct.

This also gives the possibility of automatic coding, and interactive conver-

sation for our tentative aid software tool.

Flexibility

Our model should accommodate incomplete or redundant data struc-

tures, reflecting inferior design practice. However, the tentative aid soft-

ware tool should be able to detect such patterns. For example two func-

tional hierarchies with a common parent and common children may

coexist (F1 is a parent of f2, f3; F1 is a parent of f2, f3, f4). In addition, the

model should be able to hold relations among entities, representing differ-

ent levels of abstraction. For example a function can be related to a physi-

cal embodiment or a product architecture including that physical embodi-

ment.

We refer to entities similarly as we do to classes in Object-Oriented data

models. However, we use the notion of relation tables in Relational Data-

base models. For example we want to capture different instances of func-

tion sequences or product architecture. We represent such instances with

an entity which is represented as a composition or aggregation in an OO

model and as a relation table in an RD model.

We may further develop relations among the entities we selected. How-

ever, with the compactness criterion we avoid showing such relations as

new entities.

We then assign attributes to these entities. Some of the entities in our

older models can now be defined as attributes which helps achieve com-

pactness. For example a physical rule (either in an abstract form or as a

mathematical equation) may be considered an attribute of a behavior.

To validate these data model requirements, we will measure the expres-

siveness of the model by examining how much of protocol data can be ex-

pressed in terms of the entities and their relations. Additionally, we will

 M. Dinar, C. Maclellan, A. Danielescu and J. Shah 16

measure inter-rater agreement; we check how different two raters analyze

a given protocol.

Conclusion

In order to investigate the relationship between design problem formula-

tion and creativity, we have created a data model called the P-map. In de-

fining its entities we looked at other models in design research. We were

inspired by the Function-Behavior-Structure (FBS) model and its several

variants such as the SBF model and the Functional Representation model.

The P-map shares many common features with FBS, although it has many

differences. Similarities include the common function, behavior and struc-

ture (artifact) group of entities and the way behaviors link functions and

structures. The differences are: allowing disjunctive hierarchical composi-

tions; the explicit declaration of requirements; the consideration of issues

designers face in meeting requirements, achieving functions, controlling

behaviors, or in any combination of these states; and the distinct relations

among the groups. These differences between our P-map and FBS are due

to potential ways of improving FBS to be incorporated in problem formu-

lation. We have focused on improving flexibility, representation of hierar-

chical structure, and expressiveness of the model.

The ability to flexibly represent a hierarchical structure is instrumental

to modeling complex and evolutionary systems. Products are getting ever

more complex and design is inherently an evolutionary process. In addi-

tion, hierarchies often help define levels of abstraction. Design studies also

agree that designers move among different levels of abstraction intermit-

tently during design.

With a flexible model that represents hierarchical structure, FBS can

still benefit from a more elaborate definition of attributes to enhance its

expressiveness. Parametric relations for example can be described in more

detail in behavior at different levels of abstraction, i.e. in terms of mathe-

matical expressions, qualitative models, or unknown relations.

To address these points, a symmetric hierarchical representation is in-

troduced not only in each of the three domains (F, B, S) but in additional

domains, which are requirements and issues.

Different definitions and interpretations of FBS have tried to place the

intention or the purpose of the design along the lines of any of the three

domains. Design problems, however, are different in that they do not al-

ways start with a known functional decomposition that requires a search

for components for each function, or with known components that should

 Beyond Function-Behavior-Structure 17

be adapted to accommodate new functions. Requirements, especially in the

design of novel products for specific customer needs, should be explicitly

identified.

An issue is a point that the designer believes to be pivotal or problemat-

ic in achieving a design objective. An issue can arise in realizing a func-

tion with a specific artifact or behavior, in realizing conflicting design

goals such as lower weight and strength of a structure or in accommodat-

ing different components in a product architecture due to incompatible in-

terfaces to name a few. Issues, therefore, can be seen as intimately related

to the other domains.

Generic inter and intra-domain relationships between these entities are

also identified in addition to optional attributes of the entities. This leads to

a more expressive and flexible model that is domain independent and well

suited for representing problem formulations of designers with different

expertise levels and creativity.

The model has been used for coding protocol data which necessitates

the use of formalism. Answer Set Programming (ASP) as a formal predi-

cate logic language was used for coding data.

In real life, design is neither monotonic nor procedural. The designer at

each step of the design may think about new solution principles, using al-

ternate behaviors and corresponding functions, or add new requirements. A

benefit of implementing a declarative computational framework for our re-

presentation is that partial data fragments can be added and deleted without

worrying about the consistency of the P-map.

We are building an interactive tool for collecting data about solving de-

sign problems, in our P-map format. We believe that our P-map model can

help testing hypotheses about the relation between formulation and creativ-

ity by providing an analysis tool at a fine level of detail. Some possible ex-

amples, inspired by our earlier discoveries, are finding the sequence of

emergence of solution principles, and checking how issues are covered in

relation to other entities.

Acknowledgments

This study is supported by the National Science Foundation, CMMI grant

number 1002910. The opinions expressed in this paper are those of the au-

thors and are not endorsed by the National Science Foundation. We thank

Glen Hunt for his comments on the earlier versions of our P-map.

 M. Dinar, C. Maclellan, A. Danielescu and J. Shah 18

References

1. Dinar M, Shah JJ, Langley P, Hunt GR, Campana E (2011) A Structure

for Representing Problem Formulation in Design. Proceedings of the In-

ternational Conference on Engineering Design

2. Dinar M, Shah JJ, Langley P, Campana E, Hunt GR (2011) Towards a

Formal Representation Model of Problem Formulation in Design. Pro-

ceedings of ASME DETC

3. Gero JS (1990) Design prototypes: a knowledge representation schema for

design. AI Magazine 11(4):26-36

4. Goel AK, Rugaber S, Vattam S (2009) Structure , Behavior and Function

of Complex Systems : The Structure, Behavior, and Function Modeling

Language. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing 23(1):23-35

5. Chandrasekaran B (1994) Functional Representation: A Brief Historical

Perspective. Applied Artificial Intelligence 8(2):173-197

6. Michael G (2008) Answer Sets. In: Frank van Harmelen VL and BPBT-F

of AI (ed) Handbook of Knowledge Representation. Elsevier, pp 285-316

7. Gui JK (1990) A Function-Behaviour-Structure Machine Design Model

and its use in Assembly Sequence Planning. Journal of Engineering De-

sign 1(3):239-259

8. Dorst K, Vermaas PE (2005) John Gero’s Function-Behaviour-Structure

model of designing: a critical analysis. Research in Engineering Design

16(1-2):17-26

9. Galle P (2009) The ontology of Gero’s FBS model of designing. Design

Studies 30(4):321-339

10. Chandrasekaran B, Josephson JR (2000) Function in Device Representa-

tion. Engineering with Computers 16(3-4):162-177

11. Stone RB, Wood KL (2000) Development of a functional basis for design.

Journal of Mechanical Design 122(4):359-370

 Beyond Function-Behavior-Structure 19

12. Hirtz J, Stone RB, Mcadams DA, Szykman S, Wood KL (2002) A func-

tional basis for engineering design : Reconciling and evolving previous

efforts. Research in Engineering Design 13:65-82

13. Chandrasekaran B (2005) Representing function : Relating functional re-

presentation and functional modeling research streams. Artificial Intelli-

gence for Engineering Design, Analysis and Manufacturing 19:65-74

14. Gero JS, Kannengiesser U (2004) The situated function-behaviour-

structure framework. Design Studies 25(4):373-391

15. Gero JS, Kannengiesser U (2007) A function–behavior–structure ontology

of processes. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing 21(04):379-391

16. Howard TJJ, Culley SJJ, Dekoninck E (2008) Describing the creative de-

sign process by the integration of engineering design and cognitive psy-

chology literature. Design Studies 29(2):160-180

17. Gero JS, Mc Neill T (1998) An approach to the analysis of design proto-

cols. Design studies 19(1):21–61

18. Neill TM, Gero JS, Warren J (1998) Understanding conceptual electronic

design using protocol analysis. Research in Engineering Design

10(3):129-140

19. Pourmohamadi M, Gero JS (2011) LINKOgrapher: An Analysis Tool to

Study Design Protocols Based on FBS Coding. Proceedings of the Inter-

national Conference on Engineering Design. Copenhagen, Denmark, pp 1-

10

20. Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T (1996) Sup-

porting conceptual design based on the function-behavior-state modeler.

Artificial Intelligence for Engineering Design, Analysis and Manufactur-

ing 10(4):275-288

21. Anthony L, Regli WC, John JE, Lombeyda SV (2001) An Approach to

Capturing Structure, Behavior, and Function of Artifacts in Computer-

Aided Design. Journal of Computing and Information Science in Engi-

neering 1(2):186-192

22. Maher ML, Gomez de Silva Garza A (1997) Case-based reasoning in de-

sign. IEEE Expert 12(2):34-41

 M. Dinar, C. Maclellan, A. Danielescu and J. Shah 20

23. Umeda Y, Takeda H, Tomiyama T, Yoshikawa H (1990) Function, beha-

viour, and structure. Applications of artificial intelligence in engineering

V. Computational Mechanics Publications and Springer-Verlag, Berlin, pp

177–194

24. Simon HA (1996) The Sciences of the Artificial. MIT Press, Cambridge,

MA

25. Dorst K, Cross N (2001) Creativity in the design process: co-evolution of

problem–solution. Design Studies 22:425-437

26. Maher M, Poon J, Boulanger S (1996) Formalising Design Exploration as

Co-Evolution: A Combined Gene Approach. Advances in Formal Design

Methods for CAD: Proceedings of the IFIP WG5.2 Workshop on Formal

Design Methods for Computer-Aided Design

27. Eisentraut R, Gunther J (1997) Individual styles of problem solving and

their relation to representations in the design process. Design Studies

18:369-383

28. Akin O, Chengtah L (1996) Design protocol data and novel design deci-

sions. In: Cross N, Christiaans H, Dorst K (eds) Analysing Design Activi-

ty. John Wiley & Sons, Chichester, UK, pp 35-63

29. Gero J, Kannengiesser U (2007) Locating Creativity in a Framework of

Designing for Innovation. In: León-Rovira N (ed)Springer Boston, pp 57-

66

30. Gelfond M, Lifschitz V (1988) The stable model semantics for logic pro-

gramming. In: Kowalski RA, Bowen KA (eds) Proceedings of the Fifth

International Conference on Logic Programming. MIT Press, pp 1070-

1080

31. Barker R (1990) CASE method: entity relationship modelling. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA

32. Goel V, Pirolli P (1992) The structure of Design Problem Spaces. Cogni-

tive Science 16(3):395-429

33. Newell A, Simon HA (1972) Human Problem Solving. Prentice-Hall, Up-

per Saddle River, NJ

