
Investigating the Solution Space of an Open-Ended
Educational Game Using Conceptual Feature Extraction

Erik Harpstead, Christopher J. MacLellan, Kenneth R. Koedinger,
Vincent Aleven, Steven P. Dow, Brad A. Myers

Human-Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA
{eharpste, cmaclell, koedinger, aleven, spdow, bam}@cs.cmu.edu

ABSTRACT
The rich interaction space of many educational games presents a
challenge for designers and researchers who strive to help players
achieve specific learning outcomes. Giving players a large amount
of freedom over how they perform a complex game task makes it
difficult to anticipate what they will do. In order to address this
issue designers must ask: what are students doing in my game?
And does it embody what I intended them to learn? To answer
these questions, designers need methods to expose the details of
student play. We describe our approach for automatic extraction
of conceptual features from logs of student play sessions within an
open educational game utilizing a two-dimensional context-free
grammar. We demonstrate how these features can be used to clus-
ter student solutions in the educational game RumbleBlocks. Us-
ing these clusters, we explore the range of solutions and measure
how many students use the designers’ envisioned solution.
Equipped with this information, designers and researchers can
focus redesign efforts to areas in the game where discrepancies
exist between the designers’ intentions and player experiences.

Keywords

Educational Games, Representation Learning, Context-Free
Grammars, Clustering

1. INTRODUCTION
Educational games are a growing sub-field of instructional tech-
nology. Researchers see video games as a compelling medium for
instruction because they can offer students the ability to practice
new skills within an authentic context that poses little personal
risk [7]. These promising aspects of games have led many educa-
tional game designers to create “open games”, which allow stu-
dents to exercise creativity in how they solve problems. [12,25].
Open educational games are a form of exploratory learning envi-
ronment and commonly use ill-defined problems as part of their
designs [11,19]. While the tendency toward open experiences is
compelling for educational game designers, it presents problems
when analyzing student learning, a necessary part of designing
activities to foster robust learning.

When designing an open game experience, the designer surren-
ders a degree of control over the nature and progression of the
experience to the player [10]. This openness can be problematic to
the designers of educational game experiences who are concerned
that students receive some type of intended instruction and
achieve a desired learning outcome. Educational game designers
require a detailed picture of how students are playing a game in
order to know if disparities exist between the designers’ intentions
and player experiences; and, if such disparities do exist, designers
need to know where to focus redesign efforts.

To facilitate designers’ and researchers’ analysis of open educa-
tional games we propose a methodology for extracting conceptual

features from student log data. We demonstrate our methodology
in RumbleBlocks, an educational game designed to teach basic
concepts of structural stability to young children [5]. The method
takes as input logs of student gameplay and yields a set of concep-
tual features which describe student solutions. While some aspects
of our approach are specific to RumbleBlocks, the general concept
should be applicable to open educational games.

To automatically generate features in RumbleBlocks, we use a
four-step process that converts the log data from student play into
feature vectors. This process, which is the primary contribution of
this paper, consists of discretizing the log data containing student
solutions; generating a grammar from the discretized logs; using
the grammar to parse each solution; and converting the resultant
parse trees into vectors that concisely represent the structural
components of the solutions. In the following sections, we first
describe the game RumbleBlocks and then provide the details of
the four-step process to extract features. Afterwards, we show the
results of using the extracted features to cluster student solutions,
which enables the identification of misalignment between design-
er intentions and student actions.

1.1 RumbleBlocks
RumbleBlocks is an educational game designed to teach basic
structural stability and balance concepts to children in kindergar-
ten through grade 3 (5-8 years old) [5]. It focuses primarily on
three basic principles of stability: objects with wider bases are
more stable, objects that are symmetrical are more stable, and
objects with lower centers of mass are more stable. These princi-
ples are derived from the National Research Council’s Framework
for New Science Educational Standards [21] and other science
education curricula for the target age group.
The game follows a sci-fi narrative where the player is helping a
group of aliens who become stranded when their mother ship is
damaged. Each level (see Figure 1 for an example level) consists
of an alien stranded on a cliff with their deactivated space ship
lying on the ground. The player must use an inventory of blocks
to build a structure that is tall enough to reach the alien. In Figure
1, the player is dragging a third block (the highlighted square
block) from the inventory (top left) to the tower-under-
construction (bottom, center). Additionally, the player’s structure
must also cover a series of blue “energy balls” floating in space
which are narratively used to power the space ship, but serve to
both guide and constrain the players’ designs. Once the student is
confident in their design, they can place the spaceship on top of
their tower triggering an earthquake that serves as a test of the
tower’s stability. If, at the end of the quake, the tower is still
standing and the spaceship is still on top, the student passes the
level and proceeds to the next level; otherwise they start the level
over again.
Beyond the limits imposed by the energy ball mechanic and the
types of available blocks, students are not very constrained in the

designs they can create. Each level in RumbleBlocks is designed
to emphasize a particular principle of structural stability, and thus
has a particular solution that was envisioned by the designers.
However, students are not required to use it, and it is even possi-
ble that students may find a solution that is better than the one that
the designer envisioned. Throughout development, the designers
formed an intuition for the different groups of answer types being
used by students, but they lacked methods for understanding how
similar two answers were, and how many different answers were
possible for each level. While it would have been possible to ren-
der all student solutions into screenshots, it would have been in-
feasible to manually comb through the thousands of towers gener-
ated by students.
To address this issue of understanding the kinds of solutions stu-
dents are using, we have developed a method for extracting the
conceptual features of game states in RumbleBlocks utilizing a
two-dimensional context-free grammar. These features allow the
designers and researchers of RumbleBlocks to examine the differ-
ent sub-patterns that players are using in building their towers.
The conceptual features can be used as a way of comparing dif-
ferent towers and evaluating how often students produce the an-
swer which designers expected. It also enables us to zero in on the
solutions they did not expect. To demonstrate the utility of these
features we perform a clustering analysis, which assigns towers to
groups, which correspond to the different unique solution that are
possible on each level of the game. Designers can use this analysis
to better understand the space of student solutions.

2. CONCEPTUAL FEATURE EXTRACTION
The first challenge in using RumbleBlocks data, or any education-
al game data, is to convert it into a form that is amenable to analy-
sis. This task is not easy because a single state, or tower, in Rum-
bleBlocks is both continuous and two-dimensional. Previous work
has used an empirical measure of symmetry, width-of-base, and

center-of-mass (human selected features) to describe a tower and
has shown that these features can be predictive of student out-
comes [9]. These features give a useful abstract evaluation of
students’ solutions; however, they are not descriptive enough to
provide insight regarding specific patterns in student solutions.
Without a more detailed description, it is hard for a designer to
understand where new interventions need to be implemented to
better facilitate student learning. In this work, we seek to remedy
this problem by automatically extracting fine-grained conceptual
features using unsupervised learning directly from two-
dimensional descriptions of towers. These features allow us to
investigate the solution space at a higher level of detail.
Our conceptual feature extraction process takes as input log files
from all student play sessions and outputs all student towers as
feature vectors that represent the towers’ structural components.
The process consists of the four steps illustrated in Figure 2 and
discussed in turn in the next sections. First, we discretize the rep-
resentations of all towers in the raw log files using a two-
dimensional grid. Second, we generate grammatical rules based
on the discretized representations using a novel algorithm of our
own design: the Exhaustive Rule Generator (ERG), which induces
a two-dimensional grammar returning an exhaustive set of rules
capable of parsing the entire set. Third, the discrete representa-
tions are parsed using the rules generated by ERG, which returns a
set of parse trees describing each tower in a hierarchical fashion.
Finally, we process the parse trees to generate a set of feature
vectors that denote which concepts from the grammar are present
within each tower.

2.1 Discretization
The first step in the conceptual feature extraction process is dis-
cretization, or gathering meaningful data from the logs and con-
verting it from a continuous two-dimensional space into a discrete
two-dimensional space. The input to this step is the raw student
log data, which contains action-by-action traces of student play
sessions at replay fidelity. The logs generated by RumbleBlocks
are intended to be post-processed through a replay analysis engine
[9] which allows researchers to play logs back through an active
instance of the game engine in order to extract information from
live game states. Using this approach we are able to access infor-
mation on individual game objects, such as collision information
or bounding box dimensions, without having to log everything at
the time of play. Since the logs are being replayed within the same
game engine, the replayed game states are consistent with what
students experienced.
To convert the continuous data from RumbleBlocks into discrete
data we utilized a binning process. To bin a tower, the coordinates
of the extents of each block’s bounding box (the smallest rectan-
gle which can be drawn around the block, a property accessible in
the active game state) are translated such that the bottom left cor-
ner of the tower is at position (0,0). After translation, all of the
edge coordinates of each block are divided by the size of the

Figure 1. An example level from RumbleBlocks. The alien

is stranded on the cliff and players must build a tower
which is tall enough to reach him while also covering all

blue “energy balls” to power his spaceship.

Figure 2. The Conceptual Feature Extraction Process.

smallest block (a square), creating a unit grid. Finally, the edges
of blocks are rounded to their nearest integer positions (e.g., an x
position of 1.6 would be rounded to 2), in effect “snapping”
blocks to grid positions, which helps to ensure that clear divisions
can be drawn between blocks because some blocks are slightly out
of alignment. After binning, we output the discretized towers as a
set of blocks described by their type and converted left, right, top
and bottom values. The block type is the concatenation of the
original block’s shape (cube, rectangle etc.) and its rotation about
the z-axis rounded to the nearest 15 degrees (for example the “rec-
tangle” block with a 90 degree angle would now have “rectan-
gle90” as its type). Thus, the final tower is discrete and comprised
of blocks binned to a unit grid.

2.2 Exhaustive Rule Generation (ERG)
Once all of the student log data has been converted into discre-
tized towers, we can automatically generate features describing
the spatial aspects of these towers using two-dimensional context-
free grammars. These grammars, which have been used to per-
ceive structure in pictures, are an extension of 1D grammars for
strings [4]. The grammar used in our approach are simplification
of probabilistic two-dimensional context-free grammars, which
have been used in previous work to teach an artificial agent to
learn to perceive tutor interfaces [16]. Our approach is slightly
different than this previous work in that we do not need to choose
a single best parse of a tower but instead want to extract all of the
spatial features present in the tower. This makes the rule probabil-
ities from [16] unnecessary and so we omit them. Additionally,
the towers in the RumbleBlocks task are much more complicated
than the grid layout of the tutoring system interfaces explored in
the previous work. Despite these differences, the spirit of our
work is the same. We are using context-free grammars to perform
representation learning.
Before explaining how we automatically generate a grammar we
give a description of how they are structured. A two-dimensional
context-free grammar is represented by a 4-tuple G = <S,V,E,R>.
S is the start symbol, which in our case represents the concept of a
complete tower. V represents the set of nonterminal symbols,
which represent the structural components of a tower. In the trivi-
al case these nonterminals represent terminals, i.e. individual
blocks or space, but more complicated nonterminals represent
intermediate structures, e.g. a pair of blocks stacked on one anoth-
er, or even entire towers. E is the set of terminal symbols, which
in our task represent the blocks and filler space. Finally, R is the
set of rules, which describe how nonterminal symbols can decom-
pose into other terminal and nonterminal symbols, as well as the
direction (vertical, horizontal, or unary) in which they decompose.
Because our rules capture the relative positions between blocks
and the spaces between them (vertically and horizontally adja-
cent), we do not need to store position information. To clarify, our

rules have the following form:
NT BOTTOM TOP [vertical]
NT LEFT RIGHT [horizontal]
NT block [unary]

Where NT, BOTTOM, TOP, LEFT, and RIGHT are nonterminal
symbols, i.e.∈V, and block is a terminal symbol, i.e.∈E. The
vertical rule can be used to parse the two structures, BOTTOM
and TOP, into the NT structure if they are vertically adjacent,
horizontally aligned (the values of their left extents and right ex-
tents are equal), have equal width, and if the BOTTOM structure is
below the TOP structure. Similarly, the horizontal rule can be
used to parse the two structures, LEFT and RIGHT, into the NT
structure if they are horizontally adjacent, vertically aligned, have
equal height, and if the LEFT structure is to the left of the RIGHT
structure. Finally, the unary rule allows the block symbol to be
parsed into NT; no additional constraints apply for unary rules.
We utilize Chomsky Normal Form to represent our rules because
it allows for polynomial time parsing using the CKY algorithm
[6], so every nonterminal decomposes into a pair of nonterminals
or a single terminal symbol. Note that for convenience, we also
have unary start rules that point to nonterminals representing en-
tire towers. Even though this is in violation of Chomsky Normal
Form, we only have these special rules at the top-most level so it
does not have an effect on parsing complexity. See Figure 3 for an
example of how a grammar can be used to parse a tower.
Before we can parse discretized RumbleBlocks towers we need to
generate a grammar capable of parsing the set of towers. One
difficulty is that most towers are not initially parsable because
their blocks don’t align cleanly, which is needed for matching
vertical and horizontal grammar rules. To deal with the problem
that not all towers are completely rectangular in shape, we intro-
duce a new ‘space’ terminal symbol that has unit size, i.e. takes
up one grid cell, and fill in all of the negative space in a tower
with these symbols.
While introducing ‘space’ symbols enables us to parse towers that
have space in them, it also causes an additional problem. First, we
plan on automatically generating new nonterminals for blocks that
are adjacent to one another. Because there are so many ways to
pair up ‘space’ symbols we end up bloating the grammar with
unnecessary nonterminals that all reduce to space. Furthermore,
this explosive number of nonterminal symbols also pair up with
meaningful block symbols causing the grammar to grow even
larger. To prevent grammar bloat we seed our initial grammar
with the following recursive space rules:

NSPACE space [unary]
NSPACE NSPACE NSPACE [vertical]
NSPACE NSPACE NSPACE [horizontal]

Figure 3. An example of how grammar (a) can be used to describe towers (b and c).

The extra space and alignment rules of the grammar are omitted for clarity.

We also ensure that no additional nonterminals that reduce solely
to space are introduced during automatic grammar generation.
Once we augment the towers with ‘space’ symbols we use the
novel Exhaustive Rule Generator (ERG) Algorithm (see Algo-
rithm 1) to recursively generate a nonterminal for every pair of
adjacent structures. The input to the algorithm is a set of towers
and a start symbol. The algorithm starts by creating an empty
grammar (seeded with recursive space rules), adds terminals for
all of the blocks and the space symbol, creates an empty collection
of remembered structures (used to ensure multiple nonterminals
are not generated for the same structure), and iterates through the
set of towers adding rules for each tower using the recursive Rule-
Gen procedure.
The Rule-Gen procedure takes a single tower, a grammar, and a
collection of remembered structures as inputs. It starts by check-
ing if there is already a nonterminal that describes the tower, if
such a nonterminal exists it is returned. Next, the algorithm
checks if the tower only contains space, if so the algorithm returns
the special NSPACE symbol (so any generated grammar integrates
with the recursive space rules). If neither condition is met then a
new nonterminal is generated with a unique name and added to
the grammar. If the structure consists of a single terminal then a
unary rule is added decomposing the new nonterminal into the
terminal symbol. An entry in the hash table is created for that
tower and the nonterminal is returned. If the structure contains
more than one terminal, it is divided at each location (both hori-
zontal and vertical) where the structure can be divided into two
sub-structures (without splitting a terminal). For each division, the
Rule-Gen procedure is called on the sub-structures and a rule is
added mapping the new nonterminal to the nonterminals repre-
senting each sub-structure. The direction of this rule is determined

by the direction of the division. After adding rules for all divi-
sions, an entry is added to the collection mapping the structure to
the new nonterminal and the nonterminal is returned.
The result of the ERG algorithm is a grammar that contains a
nonterminal for every structure present in the set of towers. How-
ever, one subtle problem remains. Two towers that are nearly
similar, but are unaligned and consequently have an additional
‘space’ somewhere in the tower end up sharing no intermediate
nonterminal symbols in their parses, see the differences between
towers (b) and (c) in Figure 3. This is a problem because we are
using nonterminals to model spatial features common across tow-
ers. To counter this effect, we introduce a set of “alignment rules”
for every nonterminal NT in our grammar:

NT NT NSPACE [vertical]
NT NSPACE NT [horizontal]
NT NT NSPACE [horizontal]

These rules triple the number of grammar rules, but add additional
parses to towers so that they share common structure with other
similar but differently aligned towers, see Figure 4. We have two
horizontal rules so that we can have additional space on the left
and right of a symbol, but we only have one vertical rule because
we can have additional negative space on the top of a block, but
not on the bottom, because blocks in RumbleBlocks are subject to
gravity and any space below a block would be filled by the block
falling into a new position. It is important to note that while these
rules enable the towers to share similar structure, it does not give
them identical parses. This enables us to relate similar structures
using their parse trees without having to worry about truly differ-
ent towers being lumped together.

2.3 Parsing
After generating a grammar, we can use it to parse the towers and
determine all of the nonterminal symbols that can be derived from
each tower. We use a modified version of the CKY algorithm [6]
that functions over two dimensions instead of one. This algorithm,
which utilizes dynamic programming, is an approach to bottom-
up parsing in polynomial time. One feature of the CKY algorithm
is that the amount of time required to compute all parses of a tow-
er is the same as the amount of time required to compute one
parse. Using this approach, we produce all of the parses for every
tower in our set.

2.4 Feature Vector Generation
Once we have all of the parse trees, we convert them into feature
vectors. This converted format is useful because the vector repre-
sentation is more concise and easier to manipulate when doing
analyses. To create a feature vector we create a one-dimensional
vector with an integer value for every nonterminal in the gram-

Figure 4. The two possible parses of tower (c) after align-
ment rules are added. Notice that the rules in the red tree

are now similar to the rules in tower (b)’s parse tree.

mar. These values are initialized to be 0 but are set to 1 for every
nonterminal that appears in at least one of a given tower’s parse
trees, similar to previous work [17]. Thus, a feature vector is a
concise description of all the structures that are present in all of
the parses of a given tower. Once we have generated these feature
vectors, we can use them to perform a variety of analyses as we
will demonstrate next.

3. Data
The data we present here comes from a large formative evaluation
of RumbleBlocks, which was performed in two local area elemen-
tary schools. The sample includes play sessions from 174 students
from grades K-3 (5-8 years old) who played the game for a total
of 40 min across 2 sessions. The game contained 39 different
levels, each intended to target a specific principle of stability
through the use of the energy balls as scaffolding. Players played
an average of 17.8 unique levels (σ =7.2), as not all students com-
pleted the entire game. Additionally, because students are allowed
to retry levels in which they fail, the data can contain multiple
attempts by a student on each level (μ =1.24, σ =.68). In total, the
dataset contains 6317 unique structures created by students.
Due to constraints of the conceptual feature extraction process
some data had to be excluded from analysis. The parsing process
requires that blocks be aligned to a grid such that clear separations
can be drawn between them—because of this it was necessary to
omit any structures where the binning process caused blocks to
overlap the same grid cell (less than 0.2% of data). Additionally,
rotating a block will sometimes cause its bounding box to inter-
sect with adjacent grid cells, because the bounding box expands to
encompass the maximum left, right, top, and bottom values of the
block’s geometry rather than rotating with it. To address these
issues of grid overlap we exclude any record that contained blocks
whose dimensions intersected or any blocks whose z-axis rotation
was not a multiple of 90, after rounding to the nearest 15 degrees.
Overall these constraints exclude ~3.5% of our sample.
The final grammar generated from the dataset by the ERG algo-
rithm contains 13 terminals, 6,010 nonterminals, and 30,923 rules.
Each nonterminal was used an average of 50.59 times (σ =240.2)
across all towers. The average number of levels in which a given
nonterminal was used was 3.09 (σ =4.14). The average number of
nonterminals per towers was 49.96 (σ =40.23). Reporting statistics
on the number of nonterminals within an average parse or number
of parses within an average tower is complicated by the inclusion
of alignment rules which add some arbitrary number of parses to
each tower.

4. CLUSTER ANALYSIS
In order to demonstrate the utility of these conceptual features to
guide the design process in educational games, we performed a
clustering analysis of student solutions in RumbleBlocks, to dis-
cern how many solutions students were demonstrating. Clustering
takes a series of data points, in our cases represented by conceptu-
al feature vectors, and assigns them to groups based on how simi-
lar the points are. Clustering similar to ours has been used by
Andersen and Liu et al. to group game states as a way of explor-
ing common paths that players take through a game [18]. Our
approach differs from theirs in that our features are machine
learned rather than defined by designers. This allows us to ob-
serve emergent patterns in play without biasing the results with
human input.

4.1 Method
As we were interested in what kinds of solutions students were
using on each level, we performed clustering of solutions on a

level-by-level basis, which will yield groups of similar student
solutions. Within each level we utilized the k-means clustering
algorithm (we use the scikit-learn implementation [22]). This
algorithm takes as input a set of data and a parameter k, where
each datum is described by an n-dimensional vector and k speci-
fies the number of desired clusters. The output is a set of labels
assigning each datum to a particular cluster. The algorithm works
by using the k-means++ approach [3] to select initial centroids for
the clusters such that they are generally distant from one another.
This initialization algorithm guarantees that the solution found
will be O(log k) competitive to the optimal solution. Given the
initial centroid positions, the data points are then assigned to the
clusters based on which centroid they are nearest to, as measured
by the Euclidian distance between the n-dimensional vectors of
the point and the centroid. Once the points are assigned, the posi-
tions of the centroids are updated relative to the points they en-
compass. This process (also called hard expectation-
maximization) is then repeated until quiescence. Although the
worst-case running time is known to be super polynomial in the
size of the input, in practice the algorithm finds solutions reasona-
bly quickly [2]. For a given run of k-means we repeat this process
10 times and select the model that has the best fit to the data,
which is measured by the within cluster sum squared distance
from every point to its centroid. Running the algorithm multiple
times helps to avoid local maximums and accounts for the inher-
ent non-deterministic nature of the algorithm.
As we are also interested in how many solutions are present in the
data, not just which solutions are similar, we therefore must de-
termine the correct number of clusters to use, in essence choosing
a good value for k. To identify the number of clusters present in
the data, we use the G-means algorithm, which acts as a wrapper
around the k-means algorithm [8]. This approach starts by running
k-means on the entire dataset with k initialized to 1. The algorithm
then takes the clusters of points returned by the previous k-means
and attempts to divide each of them into two further sub-clusters,
again using k-means with k=2. A vector is then drawn between
the two new sub-clusters’ centroids, which represents the dimen-
sion over which the two clusters are separated. The algorithm then
projects all the points from both sub-clusters onto this single di-
mension of separation and checks to see if they have a Gaussian
distribution using the Anderson-Darling statistic (with p < 0.01).
If the distribution is found to not be Gaussian, the original value
of k is incremented and the process is repeated for all clusters.
Once all of the clusters are found to have a Gaussian distribution,
the final k value is returned, representing a good number of
groups in the dataset. This approach has been shown to be more
effective than BIC at deciding the correct value for k [8]. Because
k-means returns different clusters on different runs, we run the G-
means algorithm 10 times and return the mode k value as the most
likely value for k.
Before using the machine clustering to conduct analyses, we must
first ensure that it is creating reasonable clusters. As a test of the
validity of the clusters, we had two independent coders hand clus-
ter three levels to generate a gold standard with which to compare
the machine clustering results (κ = 0.88). Additionally, we want to
evaluate the effectiveness of our approach by comparing it to a
naïve method of automatic grouping. The naïve method we used
was to group the towers by direct equability, i.e. assigning all
towers that have identical discrete representations to the same
group. This allows us to see how much closer our approach gets to
human results than a naïve machine approach.
The selected three levels were chosen because they were part of
an in-game counterbalanced pre-posttest, which did not use the

energy ball mechanic, making them less constrained and likely to
have more variable answers, and therefore pose a greater chal-
lenge in terms of accurate clustering. Additionally, because all
students were required to play them as part of the pre-post design,
these levels have some of the largest sample sizes of all levels.
In comparing different clusterings we report the completeness,
homogeneity, V-Measure [24], and Adjusted Rand Index (ARI)
[23] on these three levels for machine clustering and direct equali-
ty using human clustering as a gold standard. These measures
each evaluate different aspects of clustering results and are stand-
ard metrics of clustering quality. The Completeness score
measures how well records in the same class are clustered togeth-
er, i.e., how well the clustering put items that should be together
in the same group. The Homogeneity score measures how well
records that are different are separated, i.e. when the elements
within a given cluster are all the same. Because these measures
are in opposition to each other, we report the V-measure, which
gives a harmonic balance between the completeness and homoge-
neity scores. Finally, ARI is a measure of clustering accuracy
adjusted for chance. The measure has a range of [-1, 1] and ap-
proaches 0 when guessing.
After testing the clustering on a subset of hand-coded levels, we
also wanted to gauge the validity of the approach on all levels. To
measure validity we make the assumption that if two towers are
highly similar they are also likely to both stand or fall in the
earthquake, though some noise is to be expected due to indetermi-
nacies in the game’s physics engine. Taking this assumption, we
can again use homogeneity as a way of calculating how consistent
the success/failure designation is within a cluster. Comparing the
homogeneity scores of the machine clustering and the random
clustering of the towers (using the same number of clusters as
determined by G-means) can tell us if the machine clustering is
significantly better than that expected by chance. This metric can
be interpreted as a sanity check to ensure that the clustering is
actually working on levels that have not been hand labeled.
After evaluating clustering validity, we can use clustering to get a
sense of how often players are using designer envisioned solu-
tions. In designing the levels, the game designers tried to make
each level focus on one of the three targeted principles of stability
(low center of mass, wide base, symmetry). That is, the designers’
intention is that on each level, the configuration of the energy dots
and the block inventory, are such that the student is led to a solu-
tion that exemplifies the particular principle targeted at that level.
It is fine, and probably desirable, if levels allows for multiple (and
unforeseen) solutions. However, what we hope to avoid is levels
that have a large number of unforeseen solutions that do not ad-
dress the particular principle that the level is intended to target.
To perform this alignment analysis we had one of the designers of
RumbleBlocks generate a play session log that represented the
“answer key” for each level. We then determined which of the

clusters the intended solution would be grouped into on each level
and compared the number of towers in that group to the total
number of towers for that level. This information can help us get a
sense of the alignment between what designer expectant students
to do and what players actually do. Having this information can
help the designers know where to focus future redesign efforts to
best target discrepancies.

4.2 Results
When looking at the measures of clustering effectiveness in Table
1 we see that the k-means algorithm was able to outperform
straight equality grouping in ARI and completeness. This can be
interpreted to mean that k-means clustering is making a higher
percentage of correct decisions in grouping structures, suggesting
that the results of clustering can be validly used in further analy-
sis. In all instances, the equality grouping performs better than k-
means clustering in homogeneity score because if direct equality
is used to assign group labels the resulting groups will be, by def-
inition, perfectly homogeneous. In many instances, this causes the
V-measure to also be better because V-measure evenly weights
for completeness and homogeneity. Overall these results can be
interpreted to mean that clustering along conceptual features of
towers provides reasonable grouping accuracy when compared to
human clustering.
When clustering was performed across all levels, the mean homo-
geneity of the k-means clusters was found to be significantly
greater than the homogeneity from random grouping of student
solutions using a two-sample t-test (p < .001). Assuming that
similar towers would stand or fall together, this further supports
the idea that the clustering algorithm is not separating similar
student solutions.
Overall the clustering algorithm generated an average of 8 clusters
per level (σ = 3.98), compared to the average number of groups as
determined by equality grouping 56 (σ = 45.77). The smallest
number of clusters (2) was seen in the tutorial level, which con-
tains only 1 block and the spaceship allowing for very little differ-
ence between solutions. The highest number of clusters (17) was
found in a later level (centerOfMass_07) which contains 5 larger
blocks and 6 energy balls allowing for nuanced differences in
solution styles.
Our analysis of what percentage of solutions appear similar to the
designers’ intended solutions shows a high degree of variability,
see Figure 5. Some levels, like the tutorial and other earlier levels,
are found near the higher end of the spectrum because as introduc-
tory levels they do not allow for a large number of solutions.
However, the levels on the lower end of the spectrum indicate that
few students actually created the towers envisioned by the design-
ers. These levels warrant a closer investigation to ascertain what
other kinds of solutions students are producing. For example,
upon further inspection of the solutions to centerOfMass_07, de-
signed to target the principle of low center of mass, we discovered

Table 1. Clustering measures (completeness, homogeneity, v-measure, and adjusted rand index)
means and standard deviations after 10 iterations of clustering.

Note that equality clustering is constant and so has no standard deviation.

Level Comparison Completeness (SD) Homogeneity (SD) V-Measure (SD) Adj. Rand Index (SD)
com_11_noCheck

(n=251)
k-means .74 (.06) .57 (.10) .63 (.04) .51 (.08)
equality .55 (NA) .99 (NA) .71 (NA) .23 (NA)

s_13_noCheck
(n=249)

k-means .83 (.02) .63 (.04) .72 (.02) .47 (.04)
equality .60 (NA) .99 (NA) .75 (NA) .16 (NA)

wb_03_noCheck
(n=254)

k-means .63 (.02) .80 (.02) .71 (.02) .42 (.02)
equality .53 (NA) .99 (NA) .69 (NA) .28 (NA)

that a large number of student solutions that did not typify the
level’s key principle (See Figure 6). While a number of these
solutions did not actually survive the earthquake the variety of
atypical solutions points to the need for more guidance. In further
iterations designers should focus their efforts on these levels to
consider whether students need more scaffolding.

5. DISCUSSION
In this paper we have described a process for conceptual feature
extraction from logs of gameplay in an educational game. The
process follows four steps starting with the raw student log files.
The files are discretized and then used to generate a two-
dimensional context-free grammar that can be used to parse the
towers and yield a vector of features present in the tower. We
demonstrated how conceptual features could be used to perform a
clustering analysis of common student solutions.
While the results we discussed are specific to RumbleBlocks as-
pects of our approach could be generalized to other games or edu-
cational technology environments by altering some of the steps in
the process. One example of another game this approach would
work for is Refraction, which has players redirecting laser beams
around a grid based board by placing laser splitters to make prop-
er fractions [1,18]. This game already takes place on a grid and so
would not require a discretization step, but the other steps would
be applicable. In this game, our approach would learn features
corresponding to patterns of laser splitters on the grid, which
could be used to generate feature vectors for each student solution
and to cluster these feature vectors. These clusters would be simi-
lar to those generated by Liu et al. [18] but the features would be
automatically generated rather than human tagged.
When applying our approach more generally, the discretization
step will always be specific to a particular game or interface, as it
requires an intimate knowledge of the context. Employing a re-
play analysis engine can assist with discretization by providing a
standard format [9]. The ERG algorithm is applicable to any dis-
crete two-dimensional representation of structure in which adja-
cency relations are meaningful. Converting parses into feature
vectors for analysis is a technique that should be applicable to
most situations.
The features generated with this method can be used by many
different kinds of analyses beyond what we present here. For in-
stance, the feature vectors could be used as a way to represent
game data in a format suitable for DataShop [13], a large open
repository of educational technology interaction data. A feature
vector is analogous to the state of a tutoring system interface and
the changes in the feature vector from step to step correspond to
the student actions. Additionally, virtual agents, such as SimStu-
dent [20], could use this data representation as a way of under-

standing and interacting with educational games, enabling us to
model student learning in these contexts.
While the grammars extracted by our method have proven to be
useful, they still have some limitations, such as an inability to
represent towers that cannot be cleanly mapped to a grid or which
contain overlapping or angled substructures. Making the grammar
more descriptive would require the relaxing of constraints con-
cerning how nonterminals can be parsed, e.g., not requiring strict
alignment. Another issue has to do with how many different non-
terminals map to nearly equivalent structures. Even though we
attempt to minimize this by introducing the alignment and space
rules, there are still cases where further reductions could be im-
plemented. One potential solution, to address this problem in gen-
eral, is to implement model merging to condense pairs of nonter-
minals that represent similar concepts into single nonterminals
[15]. The ability to merge similar nonterminals is a promising
direction for future work.
In addition to being able to describe more towers, model merging
would also allow the generalization of grammars to cases we have
not seen. Because context-free grammars can be used generative-
ly, the generalized grammar could be used to produce novel tow-
ers, similar to the work of Talton et al. [26]. In our case, these
novel towers would give insight into the as-yet-unseen portions of
the solution space. Furthermore, the novel towers could be used as
templates in creating new levels. In future work we will be explor-
ing ways to feed this information, and information from cluster-
ing, directly back into the game development environment.
The clustering results not only provide the designers of Rumble-
Blocks with a picture of how students are playing their game, they
also possess further uses beyond assisting design iteration, such as
exploring research questions. One potential use of the clustering is
as an empirical measure of how “open” a particular level is, by
counting how many different clusters, i.e. different solutions, that
level affords. Using this measure allows researchers to explore the
interactions of openness with learning and engagement. Exploring
this interpretation of the clustering results will be a part of our
ongoing analysis of RumbleBlocks.
Another intriguing direction for future work would be to explore
the relationship between the conceptual features and the
knowledge components [14] used in building towers in Rumble-
Blocks. There may exist a mapping between the substructures
used in towers and the conceptual knowledge components related
to stable structures. Exploring this would require measurements of
how a student’s use of particular structures changed over time and
how it relates to task performance. If such a mapping exists, then
our approach would not only be useful for automated feature ex-
traction, but also for automatically building models of conceptual
knowledge components.

Figure 6. An example of mismatch with designer expecta-
tion and student solution from the centerOfMass_07 level.

The designer's answer is on the left.

Figure 5. Percentage of use of the envisioned solution on a

level for each level.

6. CONCLUSION
Framing game experiences in terms of conceptual features can
help both designers and researchers better understand how stu-
dents interact with their games. The main contribution of this
paper is an approach for extracting conceptual features from play
logs within educational games and using these features to perform
clustering of student solutions. Designers can use the clusterings
to better understand the space of student solutions and to know
where to focus their attention to improve student learning experi-
ences. Ultimately we envision feeding back this clustering infor-
mation directly into the game design platform. This information
can also enable researchers to explore important questions, such
as how “openness” and difficulty relate to student engagement.
While our approach was created with the specific two-
dimensional world of RumbleBlocks in mind, it should be general-
izable, and we hope others will find it useful in exploring other
educational games.

7. ACKNOWLEDGMENTS
We would like to thank the designers of RumbleBlocks and our
colleagues who conducted the formative evaluation that yielded
our data. This work was supported in part by a Graduate Training
Grant awarded to Carnegie Mellon University by the Department
of Education #R305B090023 and the DARPA ENGAGE research
program under ONR Contract Number N00014-12-C-0284.

8. REFERENCES
[1] Andersen, E., Liu, Y., Apter, E., Boucher-genesse, F., and

Popovi, Z. Gameplay Analysis through State Projection.
Proc. FDG ’10, (2010).

[2] Arthur, D. and Vassilvitskii, S. How slow is the k -means
method? Proc. SCG ’06, ACM Press (2006), 144.

[3] Arthur, D. and Vassilvitskii, S. K-means++: The Advantages
of Careful Seeding. Proc. ACM-SIAM, (2007), 1027–1035.

[4] Cherubini, A. and Pradella, M. Picture Languages: From
Wang Tiles to 2D Grammars. In S. Bozapalidis and G.
Rahonis, eds., Algebraic Informatics. Springer, Berlin,
Germany, 2009, 13–46.

[5] Christel, M.G., Stevens, S.M., Maher, B.S., et al.
RumbleBlocks: Teaching Science Concepts to Young
Children through a Unity Game. Proc. CGames 2012,
(2012), 162–166.

[6] Cocke, J. Programming Languages and their Compilers:
Preliminary Notes. New York University, 1969.

[7] Gee, J.P. What video games have to teach us about learning
and literacy. Palgrave Macmillan, New York, 2003.

[8] Hamerly, G. and Elkan, C. Learning the k in k-means. Proc.
NIPS ’03, (2003).

[9] Harpstead, E., Myers, B.A., and Aleven, V. In Search of
Learning : Facilitating Data Analysis in Educational Games.
Proc. CHI ’13, (2013), 79–88.

[10] Hunicke, R., Leblanc, M., and Zubek, R. MDA : A Formal
Approach to Game Design and Game Research. Proc. of the
AAAI Workshop on Challenges in Game AI, (2004), 1–5.

[11] De Jong, T. and Van Joolingen, W.R. Scientific Discovery
Learning with Computer Simulations of Conceptual

Domains. Review of Educational Research 68, 2 (1998),
179–201.

[12] Ketelhut, D.J. The Impact of Student Self-efficacy on
Scientific Inquiry Skills: An Exploratory Investigation in
River City, a Multi-user Virtual Environment. Journal of
Science Education and Technology 16, 1 (2006), 99–111.

[13] Koedinger, K.R., Baker, R.S.J. d, Cunningham, K.,
Skogsholm, A., Leber, B., and Stamper, J. A Data Repository
for the EDM community: The PSLC DataShop. In C.
Romero, S. Ventura, M. Pechenizkiy and R.S.J. d. Baker,
eds., Handbook of Educational Data Mining. 2010, 43–55.

[14] Koedinger, K.R., Corbett, A.T., and Perfetti, C. The
Knowledge-Learning-Instruction Framework: Bridging the
Science-Practice Chasm to Enhance Robust Student
Learning. Cognitive Science 36, 5 (2012), 757–98.

[15] Langley, P. Simplicity and Representation Change in
Grammar Induction. 1995.

[16] Li, N., Cohen, W.W., and Koedinger, K.R. Learning to
Perceive Two-Dimensional Displays Using Probabilistic
Grammars. LNCS 7524, (2012), 773–788.

[17] Li, N., Schreiber, A., Cohen, W.W., and Koedinger, K.R.
Creating Features from a Learned Grammar in a Simulated
Student. Proc. ECAI ’12, (2012).

[18] Liu, Y., Andersen, E., Snider, R., Cooper, S., and Popovi, Z.
Feature-Based Projections for Effective Playtrace Analysis.
Proc. FDG ’11, (2011), 69–76.

[19] Lynch, C., Ashley, K.D., Pinkwart, N., and Aleven, V.
Concepts , Structures , and Goals : Redefining Ill-
Definedness. International Journal of Artificial Intelligence
in Education 19, (2009), 253–266.

[20] Matsuda, N., Cohen, W.W., Sewall, J., Lacerda, G., and
Koedinger, K.R. Evaluating a Simulated Student Using a
Real Student’s Data for Training and Testing. LNAI 4511,
(2007), 107–116.

[21] National Research Council. A Framework for K-12 Science
Education: Practices, Crosscutting Concepts, and Core
Ideas. The National Academies Press, 2012.

[22] Pedregosa, F., Varoquaux, G., Gramfort, A., et al. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research 12, (2011), 2825–2830.

[23] Rand, W. Objective Criteria for the Evaluation of Clustering
Methods. Journal of American Statistical Association 66,
336 (1971), 846–850.

[24] Rosenburg, A. and Hirschber, J. V-Measure: A Conditional
Entropy-based External Cluster Evaluation Measure. Proc.
EMNLP-CoNLL ’07, (2007), 410–420.

[25] Spring, F. and Pellegrino, J.W. The Challenge of Assessing
Learning in Open Games : HORTUS as a Case Study. Proc.
GLS 8.0, (2011), 200–208.

[26] Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N., and
Měch, R. Learning design patterns with bayesian grammar
induction. Proc. UIST ’12, (2012), 63–74.

	1. INTRODUCTION
	1.1 RumbleBlocks

	2. CONCEPTUAL FEATURE EXTRACTION
	2.1 Discretization
	2.2 Exhaustive Rule Generation (ERG)
	2.3 Parsing
	2.4 Feature Vector Generation

	3. Data
	4. CLUSTER ANALYSIS
	4.1 Method
	4.2 Results

	5. DISCUSSION
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

