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I. INTRODUCTION 
Adaptive instructional software like intelligent tutoring 

systems have improved learning outcomes for students across 
several domains. However, building pedagogically effective 
systems at scale is a challenging problem. In addition to being 
expensive and technically challenging to build, they rely on 
accurate models of student learning informed by theories of how 
people learn. In our work we have explored the use of simulated 
learners for: 

1.  Efficiently author instruction at scale 

2. Evaluate pedagogical effectiveness of instruction 

3. Test theories of how humans learn 

In this paper, we describe our computational approach to 
modeling human learning within the Apprentice Learner (AL) 
architecture [1] and explore the use of these models in the 
context of four real-world use cases.  Our computational 
approach learns from interactive instruction—mimicking the 
learning process of real students. We also discuss methods of 
evaluating simulated learners present initial evidence of their 
potential. 

II. RELEVANT THEORIES OF LEARNING 
There are three lines of theories that are relevant to our work: 

statistical learning theories, computational learning theories, and 
instructional learning theories. For purposes of modeling human 
learning and performance, statistical approaches to cognitive 
modeling consist of a set of independent acquirable skills known 
as knowledge components (KC) [2] combined with a mapping 
of KCs to observable steps in an instructional environment. 
Methods like Bayesian Knowledge Tracing (BKT) [3], and 
Additive Factors Model (AFM) [4] use this mapping to predict 
the probability that a particular student will correctly complete 
the next step in a problem without assistance. However, one 
limitation of statistical models is that they require student data in 
order to estimate key parameters (e.g., students’ knowledge and 
learning rates). This makes it difficult to apply these models 
prior to collecting data from technology deployments. 

To overcome this limitation, we have been exploring the 
development and use of computational learning theories [1]. 
Models based on these theories extend prior cognitive 
architecture research [5] to explain how humans learn from 
worked examples and feedback. These models only rely on the 
task structure and presentation of materials to predict the 
acquisition of skills and misconceptions. Thus, they are able to 

predict human behavior within adaptive learning technology 
before any data is collected. 

We have leveraged our computational models, such as 
SimStudent [6] and AL agents [1], to test multiple instructional 
theories. There are a wide range of instructional approaches [7], 
such as blocked vs. interleaved instruction [1] and learning-by-
teaching [8] and identifying the best instructional approach for a 
given learning scenario is a major challenge. Our research aims 
to model human learning across a wide range of domains and 
tasks under different instructional approaches, to better 
understand when each approach is best suited to improving 
pedagogical outcomes. 

III. ENABLING TECHNOLOGICAL ADVANCES 
Our work on simulated learners is supported by the AL 

architecture, a framework for modeling the student learning 
process. Agents created within AL are simulations of inductive 
learning from examples and feedback. AL agents are designed 
to support interaction patterns similar to an intelligent tutoring 
system [9]. Given the state of an interface (Fig. 1) an AL agent 
will either attempt a problem solving step if it has an applicable 
skill and process any resulting feedback; or, if  the agent does 
not have an appropriate skill for the context it will request an 
example of what to do and induce a new skill from the example. 
AL agents learn by an iterative process of trial and error, 
bootstrapped by a small number of domain-general operators.  

 
Fig. 1. A diagrammatic representation of the Apprentice Learner Architecture 
showing the flow of examples and feedback through the different learning 
mechanisms. 

AL agents generate production rules akin to the chunks of 
procedural knowledge outlined in ACT-R theory [10], by 



chaining together operators to explain feedback provided by a 
human instructor or intelligent tutoring system. To achieve this 
functionality the AL architecture factors learning into four 
learning mechanisms that each handle different aspects of 
production rule learning. The where- and when-learning 
mechanisms determine the context in which a production rule 
should fire, the how-learning mechanism searches for chains of 
domain-general operators that explain tutor feedback, and the 
which-learning mechanism determines which production rule 
should fire if multiple are applicable. 

The four separate learning mechanisms of the AL 
architecture are designed to be modular, allowing for easy 
testing of different hypotheses of student learning. For example, 
an AL agent might instantiate when-learning using a decision 
tree that is retrained for each new example, or it might use an 
incremental categorization learner such as TRESTLE [11] which 
incorporates new examples incrementally. Additionally, a single 
algorithm may fulfill multiple roles within the architecture. For 
example, when- and where-learning may be combined. 

IV. REAL WORLD APPLICATIONS 
We have explored the application of simulated learners to 

three use cases: tutor authoring, cognitive crash testing, and 
learning theory testing. It is a widely known that authoring 
cognitive models for adaptive technologies is a difficult and time 
consuming process [12]. Our simulated learning models enable 
teachers and other non-programmers to efficiently author 
tutoring systems by teaching a simulated agent as they would a 
student—through tutoring rather than programming—and the 
agent automatically learns a cognitive model that can power 
adaptive instruction [13]. 

Once adaptive software is developed, it is difficult to know 
if it achieves desired learning outcomes. Previous work has 
explored how A/B testing can be used to evaluate which version 
of an adaptive system is better [14], but testing technology with 
real users is an expensive and time consuming process. Our 
learning models enable researchers to simulate A/B experiments 
by generating entire cohorts of simulated students to “crash test” 
different versions of instructional technologies prior to 
deploying them to real students. 

After learning technologies have been deployed, we can 
leverage them to collect educational data to improve our 
understanding of human learning. Approaches such as A/B 
testing only provide limited information to make design 
decisions between specific versions of a product. However, by 
evaluating how well the behavior of alternative computational 
models fits human behavior we can empirically test and improve 
our underlying theories of how humans learn. These 
improvements to our understanding of the learning process 
synergistically feed back into the other use cases—better 
supporting the design and evaluation of future learning 
technologies. 

V. EVIDENCE OF POTENTIAL IMPACTS 
We evaluated the use of simulated learners for the use cases. 

First, we applied simulated agents to tutor authoring. Fig. 2 
demonstrates the time it would take to author an algebra tutor 
using either Example Tracing [15] or an AL agent. We found 
that AL cut authoring time in half compared to Example Tracing, 

which already reduces authoring time by 75-80% over hand 
authoring [15]. We also applied simulated learners to 
discovering KC models. We trained simulated learners on items 
across three domains (see Table 1) and labeled items using the 
learned skills [16]. We found that simulated learners produced 
KC models that fit human data as well as, or better, than human-
generated models. These findings suggest simulated agents can 
drastically reduce the cost of building tutors. 

 
Fig. 2. A comparison of domain model authoring time for Cognitive Tutor 
Authoring Tools with and without AL agents (for an algebra tutor) 

TABLE I.  MODEL FIT STATISTICS OF SIMSTUDENT-GENERATED AND 
HUMAN-GENERATED KNOWLEDGE COMPONENT MODELS IN TERMS OF THEIR 

FIT TO HUMAN DATA 
 

Human-Generated 
Model AIC 

Simulated-Student 
Model AIC 

Algebra 6534.07 6448.1 
Stoichiometry 17380.9 17218.5 
Fraction Addition 2112.82 2202.02 

 

Next, we evaluated the use of simulated learners for 
predicting the outcome of controlled A/B experiments. We 
simulated learners using two versions of a fraction arithmetic 
tutor and gave them a simulated posttest [17]. We found that 
these simulations are able to correctly predict the outcome of an 
actual classroom A/B experiment (Fig. 3) and demonstrate how 
simulated learners can support evaluation of learning 
technologies prior to deployment. 

 
Fig. 3. Simulated agents are able to predict the main experimental effects of 
classroom A/B experiments, such as predicting that students practicing fractions 
problems in an interleaved order will perform worse in the tutor but better on a 
posttest.   

Finally, we explored the use of AL for improving our 
theories of learning. We compared two theories of how students 
learn: one positing they revise their skills by considering all 
previous applications (non-incremental) and one positing they 
revise skills only considering new examples (incremental). We 
instantiated two variants of simulated students that embody each 
theory and simulated behavior across seven tutoring systems. 
We found the incremental model better predicts human 
behavior, suggesting it is a better model of the human learning 



[17] (Fig. 4). These results demonstrate the use of AL for testing 
and improving our understanding of human learning. 

 
Fig. 4. A comparison of non-incremental (decision tree) and incremental 
(Trestle) apprentice learning agents and human learning (across seven 
domains). 

VI. SUMMARY 
We describe recent advances in simulating human learning 

and discuss our applications of simulated learning agents to three 
real-world use cases: tutor authoring, evaluating the 
effectiveness of instruction, and testing learning theories. We 
start by reviewing the Apprentice Learner (AL) architecture, a 
framework for generating and testing simulated learners. We 
then review relevant learning theories and describe our real-
world use cases. Finally, we present evidence from multiple 
simulated learner studies highlighting their potential impact for 
reducing tutor authoring costs, predicting the outcomes of A/B 
experiments before deployment, and testing and improving 
theories of how people learn. 
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