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Abstract 
In any instructional setting it is important to take into 
account the ways in which a student’s experience 
differs from the one that was envisioned by the 
instructional designer. When providing instruction in a 
massive online context, the differences between an 
instructor’s vision and a student’s experience is 
amplified. We have been exploring techniques that 
allow designers to tease apart the idiosyncrasy of their 
instructional interventions in order to improve them. In 
this presentation we will cover two techniques that we 
have employed to evaluate and better understand 
instructional interventions. 
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Introduction 
When designing technological instruction it is important 
to keep in mind that the experience of an individual 
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student may not correspond with the instructional 
designer’s intention. This issue can become 
compounded when the intervention is taken to scale.  
In such cases it is important to have tools and 
techniques capable of helping instructional designers 
understand how student performance differs from their 
expectation and, ideally, provide them with a direction 
as to how to mitigate the difference. We and our other 
colleagues in the LearnLab have explored some 
techniques for looking at this issue that we believe 
could benefit the growing community of massive online 
education. The two techniques we wish to highlight are 
Learning Curve Analysis and Solution Space Clustering. 

Learning Curve Analysis 
Understanding an instructional intervention requires a 
robust and detailed description of student behavior. To 
make analysis easier all of the educational technologies 
developed as part of the LearnLab are designed to work 
with the PSLC DataShop [5]. The PSLC DataShop is the 
largest repository of educational technology interaction 
data in the world, storing over 111,000 hours of 
student data from more than 50 projects. In addition to 
storing student data the DataShop is also equipped 
with a number of tools to facilitate analysis of 
instructional interventions. 

One of DataShop’s most powerful capacities is its ability 
to calculate learning curves of student performance on 
target skills, such as the ones in Figure 1. These curve 
show the error rate of student performance compared 
to the number of opportunities they have had to 
demonstrate mastery. The theory behind the use of 
learning curves is called the “power law of learning,” 
which suggests that error rates on a given skill 
decrease following a power law as the skill is learned 

[1].  These learning curves can be used to compare 
multiple instructional interventions by showing which 
one leads to mastery in fewer opportunities.  

In addition to serving as a measurement of learning, 
learning curves can be used to expose latent skill 
demands that might not have been apparent to the 

 

Figure 1. Two examples of learning curves of student 
performance on skills in a programing tutor showing the 
decrease of error rate over opportunities. The top curve 
shows an anomalous blip caused by the conflation of two 
separate skills as one. The lower curve demonstrates the 
effect of splitting the single skill into two separate ones. 

 



 

designer. The top curve in Figure 1 is taken from a 
programming tutor where the designers coded a skill 
for declaring a parameter of a function [2]. The curve 
deviates from the expected shape with a large blip in 
the middle. This blip was caused by the fact that a 
number of the problems required students to declare 
more than 1 parameter and the addition of extra 
syntactic troubles lead them to make errors again. 
When the model is changed to account for declaring 
single and multiple parameters as different skills then 
the power law shape becomes apparent for each skill 
individually. Discovering patterns like this can help 
designers to understand if they need to introduce new 
instruction to address overlapping skills that were 
previously being considered the same. DataShop 
provides tools to assist designers in discovering these 
types of anomalies automatically in their own data [6]. 

Solution Space Clustering 
While learning curve analysis is a powerful technique it 
does require a mapping of student actions to particular 
skills. Creating such a mapping requires a broad 
understanding of what students are capable of doing in 
your system, which can be difficult on more open-
ended tasks such as designing a product that satisfies a 
set of constraints. In such domains it is still important 
to understand how student performance might differ 
from designer expectation. To address this issue we 
have done work in mapping out the space of student 
solutions in an open-ended educational game using 
feature extraction and clustering. 

Our approach to cluster student solutions employs a 
technique called Conceptual Feature Extraction [4]. At a 
high level, the technique works by viewing student 
solutions as a parsing problem. It first induces a 

grammar to describe the solutions and the uses the 
grammar rules to parse solutions and generate feature 
vectors suitable for clustering. Each cluster is then 
interpreted as one of the possible solutions to that 
level.  

Using the clusters as a mapping of possible solutions to 
the level, designers can then see which solutions match 
the one that they had in mind and look at the relative 
frequency of students creating that solution compared 
to any other one. This data generates a graph similar to 
Figure 2. This plot shows the percentage of students 
who created the envisioned solution to each level as 
opposed to any other solution. While the plot is sorted 
by percentage the levels to the left do tend to be earlier 
tutorial levels while levels to the right tend to be more 
complicated later levels of the game. Armed with this 
information designers can then inspect what is going on 
in the levels with small percentages of usage and from 
there decide what intervention is necessary, e.g. 

 

Figure 2. A graph of the percentage of students who used 
the designer envisioned solution to each level of an 
educational game. The levels are sorted by percentage with 
mostly envisioned solutions to the left. 

 



 

changing the victory condition of the game to be more 
or less permissive of a particular type of design. We 
have recently been exploring ways of further informing 
this process using heuristics of goal and feedback 
alignment [3]. 

Conclusion 
As instruction moves increasingly toward a massive 
online context it will become more important for 
instructional designers to understand where their 
interventions might break down. We hope our 
techniques might inspire others to be wary of these 
issues and find ways to mitigate them themselves. 
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