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Abstract. Authoring Intelligent Tutoring Systems is expensive and time
consuming. To reduce costs, the Cognitive Tutor Authoring Tools and
the Example-Tracing Tutor paradigm were developed to make the tutor
authoring process more efficient. Under this paradigm, tutors are con-
structed by demonstrating behavior directly in a tutor interface, reducing
the need for programming expertise. This paper evaluates the efficiency
of authoring a tutor with SimStudent, an extension to the Example-
Tracing paradigm that is designed to produce greater generality in less
time by induction from past demonstrations and feedback. We found
that authoring an algebra tutor in SimStudent is faster than Example-
Tracing while maintaining equivalent final model quality. Furthermore,
we found that the SimStudent model generalizes beyond the problems
that were used to author it.

1 Introduction

Intelligent Tutoring Systems (ITSs) are a widely used educational technology
[1] that has been shown to improve learning over many traditional forms of
instruction [2–7]. One challenge associated with ITSs is that they are difficult to
build and require developers to make decisions about trade offs between power,
usability, fidelity, and cost [8]. To overcome the challenge of authoring high-
quality tutors, many authoring tools have been developed [8]. We focus on the
Cognitive Tutor Authoring Tools (CTAT), which has been shown to decreases
the time required to build a tutor by as much as 50% [9]. CTAT achieves these
gains by providing a drag-and-drop interface builder and by providing support
for authoring two types of tutors: Cognitive Tutors and Example-Tracing Tutors.

Cognitive Tutors provide step-by-step feedback to students while they solve
problems by comparing their actions to a model of expert behavior for the given
domain. This model uses production rules, if-then rules that map each state in a
tutoring interface to a legal action that might be taken on that state [10]. These
production rules are quite general, in that a single rule might apply to many
states throughout problem solving. However, in general these models are costly
to produce. It can take 200-300 hours of development to produce a Cognitive
Tutor for one hour of instruction and tutor development usually requires multiple



kinds of expertise (i.e., domain expertise, Cognitive Psychology, and Computer
Science) [11, 8].

Example-Tracing Tutors were developed to reduce the costs of producing
a Cognitive Tutor [9, 11]. These tutors reduce the technical costs of tutor de-
velopment by allowing domain experts and Cognitive Psychologists to build a
cognitive model by demonstration rather than by programming a production
rule model. To build an expert model in this paradigm, the tutor author demon-
strates every legal action at every step for every problem. The resulting cognitive
model, called a behavior graph, is a simplified production rule model, where each
production rule maps a single state to a single action. While some methods for
generalization do exist, these models are still much less general than Cogni-
tive Tutors. However, in practice this limitation is balanced out by the ease of
authoring– in many cases individuals can learn to author tutors in one afternoon
[9].

While CTAT drastically reduces the cost of authoring ITSs, the tutors that
it can produce are at two ends of an authoring spectrum: Cognitive Tutors are
difficult to produce, but are maximally general, while Example-Tracing Tutors
are easy to produce, but are maximally specific. Recent extensions to Example-
Tracing Tutors have addressed how to make Example-Tracing Tutors more gen-
eral. Existing techniques include specifying sequences of actions that might be
executed in any order, employing regular expressions or formulas for matching
demonstrations, and duplicating behavior graph structures for many problems
of similar type, an approach called mass-production [11]. While these techniques
have improved Example-Tracing Tutor generality, more research into how gen-
eral expert models might be produced without technical expertise is still an
active area of research.

One promising development is the SimStudent architecture, a CTAT mod-
ule that tries to bridge the gap between Example-Tracing Tutors and Cognitive
Tutors by learning production rule models from demonstrations and problem-
solving feedback [12]. Previous work has shown that authoring a model by tutor-
ing (both demonstrations and feedback) is more efficient than demonstrations
alone. However, the SimStudent approach to authoring has never been compared
to the more widely used Example-Tracing approach.

We compare authoring time for a tutor built with SimStudent and Example-
Tracing by using a Keystroke-Level Model (KLM) [13], a simple human informa-
tion processing model that estimates how many seconds it would take a trained
user to perform authoring actions. This analysis shows that SimStudent can
reduce authoring time by as much as 50%, for domains that SimStudent has
adequate background knowledge. Additionally, we evaluate the quality of the
model produced by each approach and show that while both approaches pro-
duce models with equivalent quality by the end of authoring, SimStudent shows
the ability to generalize from authored to unauthored problems along the way.
Before showing these results, we review CTAT and how it can be used to author
an Example-Tracing Tutor and then show how the SimStudent architecture can
be used to author a tutor through CTAT.



2 Authoring an Example-Tracing Tutor in CTAT

In this section, we show an example of how CTAT can be used to author an
Example-Tracing tutor for one- and two-step Algebra equation solving for a
given tutor interface. For more details see [9].

To construct an Example-Tracing tutor, one demonstrates behavior directly
in the tutoring interface. Traces of these actions are recorded in a behavior graph.
A simple Algebra tutor interface and its associated behavior graph are shown in
Figure 1.

Fig. 1. The Algebra interface and the Behavior Graph produced from demonstrating
behavior directly in the interface. The green text specifies the actions taken in the
interface and the black text just below shows the author produced skill labels. The
ellipsoids between the second and third state (partly occluded by the labels) signify
that the actions can be executed in any order.

In this figure we see an interface for tutoring multi-step algebra equation
solving (right) and a behavior graph (left). Each node represents a state of the
tutoring interface, where the initial state represents the problem to solve. Each
link coming out of a node represents an action that might be performed in the
state the node represents. In Example Tracing each link is produced as a result
of a single action demonstrated directly in the tutor interface, where many legal
actions might be demonstrated for each state.

As an example of authoring, consider a tutor for solving the equation x+2 =
10 (using the interface shown in Figure 1). To construct this tutor the author
would:

1. Create an empty behavior graph.
2. Input the equation into the interface.
3. Create the initial node of the behavior graph to represent this start state.
4. Demonstrate the first action, subtract 2 from both sides. This demonstration

produces a new link in the behavior graph, which the author will label with
to the knowledge necessary to perform that action (this label is useful for
monitoring learning).



5. Demonstrate the second action, entering x as the new left side of the equa-
tion. A second link is produced and labeled in the behavior graph.

6. Next, the third action is demonstrated, entering 8 as the new right side of
the equation. A third link is produced and labeled in the behavior graph.

7. The author performs the final action, clicking the done button. This adds
a final link to the behavior graph, which the author labels as requiring the
done skill.

8. Because the order of the second and third actions doesn’t matter, the au-
thor either selects both links and marks them as being unordered or returns
to the previous state by clicking on the node in the behavior graph and
demonstrating the actions in reverse order.

Figure 1 shows the resulting behavior graph (with the second and third links
marked as unordered– denoted by the ellipsoids behind the skill names). For
a given tutor interface, an author may produce many behavior graphs, each
representing a different problem that might be solved in that interface. Other
CTAT tools deploy the interface and associated behavior graphs as an ITS, a
matter not discussed here.

3 Authoring using SimStudent

While the Example-Tracing approach has proven effective for authoring, the
generality of the model is quite limited. To overcome this limitation the Sim-
Student architecture was created. This system extends Example-Tracing by in-
ducing more general production rule models from demonstrations and tutoring
feedback (for details on this rule induction see [12]). To summarize, SimStudent
learns production rules from the demonstrations and refines the conditions on
these production rules based on the author’s feedback.

The process of authoring a tutor with SimStudent is similar to Example
Tracing, in that the SimStudent asks for demonstrations when it does not know
how to proceed. However, when SimStudent already has an applicable produc-
tion rule, it fires the rule and shows the resulting action in the tutor interface. It
then asks the tutor author for yes/no feedback on whether this action is correct.
Based on the author’s feedback, SimStudent refines the conditions of its produc-
tion rules and proceeds to continue trying to solve the problem. If the author’s
feedback is negative, SimStudent may exhaust all of its applicable production
rules. In these cases, SimStudent asks the user for a demonstration of the correct
action. Figure 2 shows how SimStudent communicates with the tutor author to
receive a demonstration or feedback.

When authoring models in SimStudent, the author does not have to specify
that interface actions are unordered, as one would need to do in Example Tracing,
because the production rules learned by SimStudent are applicable in any order,
as long as their conditions are satisfied. It is worth noting that the process for
authoring a tutor using SimStudent produces both behavior graphs, which might
subsequently be used for Example Tracing, and a more general production rule
model, which might be used in a full-fledged Cognitive Tutor.



Fig. 2. The image on the left shows SimStudent asking for a demonstration when it
does not know how to proceed. The image on the right shows SimStudent asking for
feedback on the action it took when it does know how to proceed.

4 Method

An Algebra tutor was authored using both the Example-Tracing and SimStu-
dent approaches. In both cases, the tutor was authored to provide step-by-step
feedback on the 20 algebra equations shown in Table 1, where they are organized
by the skills necessary to solve them.

We estimated the average authoring time for each approach using the KLM
technique, which involved breaking down each authoring action into its primitive
steps (many mental pauses, point-and-click actions, and key presses) and then
using timing data for how long the average user needs to complete these primitive
steps. The KLM provides an accurate prediction of error-free task execution time
for an expert user [13]. Both tutors were authored using CTAT and the same
Algebra tutor interface, shown in Figures 1 and 2. As shown above, the authoring
actions (e.g., providing demonstrations) differ only slightly between approaches;
however, the frequency of these actions differs more substantially. In particular,
many demonstrations are replaced with feedback when authoring in SimStudent.
To compare timings between the two approaches we kept count of the number
of authoring actions needed to author each problem, ignoring those actions that
were identical between approaches (e.g., creating new behavior graph or start
state).

Finally, after each problem demonstration, we evaluated the model quality
in terms of the 20 problems that the finished tutor should be able to teach. To

Table 1. A tutor was developed to teach these 20 problems using the Example-Tracing
and SimStudent approaches. The problem numberings denote the order in which prob-
lems were authored, so all problems of the same type were authored together.

Subtract Add Divide Sub + Divide Add + Divide

1. x+1=10 5. x-5=10 9. 3x=12 13. 5x+2=12 17. 2x-1=1
2. x+2=12 6. x-6=20 10. 4x=8 14. 7x+1=15 18. 3x-3=3
3. x+3=20 7. x-7=14 11. 2x=10 15. 2x+4=8 19. 5x-2=8
4. x+4=4 8. x-2=9 12. 7x=14 16. 3x+6=9 20. 7x-4=10



evaluate each model we computed a step and recall score, similar to previous
studies [12]. The step score equals the number of correct actions suggested by
the model divided by the total number of actions (both correct and incorrect)
suggested by the model at each step. When the model suggests no actions, the
step score is 0. The step score is averaged across all steps to get an overall step
score that represents the quality of the model. The recall score is equal to 1 if
the model suggests a correct action on a given step and 0 otherwise. The recall
score is averaged across all steps to get an overall recall score. Recall assesses
how complete a model is, in terms of the percentage of steps that can be tutored.

5 Results

5.1 Authoring Time

Each approach had two authoring actions. Authoring in Example Tracing con-
sisted of demonstrating actions and specifying actions as unordered; whereas,
authoring in SimStudent consisted of a slightly longer demonstration and re-
quired the author to give feedback on SimStudent’s actions. Table 2 shows the
number of seconds estimated for each of these actions using the KLM. These
estimates were produced by breaking each action down in terms of their primi-
tive steps (mental pauses, pointing and clicking, and keypresses) and summing
the time it would take the average user to perform these steps, using previously
computed estimates [13].

Figure 3 shows the cummulative time required to author 20 problems using
each approach; these estimates were computed by counting the number of tu-
toring actions needed to author each problem and multiplying these counts by
the time estimates shown in Table 2.

5.2 Model Quality

To evaluate the quality of each model we computed the step and recall scores on
all 20 problems in the training set after each problem had been authored. This
is meant to assess the quality in terms of the 20 problems each model is being
built to teach. Figure 4 shows the step and recall scores of each approach after
each problem had been authored.

Table 2. The KLM estimates of how long it would take an author to perform each
authoring action.

Action Time (sec)

Example-Tracing Demonstration 8.8
Example-Tracing Specify Unordered Actions 5.8
SimStudent Demonstration 10.4
SimStudent Feedback 2.4



Fig. 3. Cummulative authoring time (in seconds) for each approach, as estimated by
the KLM. This model only computes the time needed to perform actions that dif-
fer between approaches (demonstrations, specifying ordering, and feedback), so these
estimates are slightly less than actual authoring time.

6 Discussion

The KLM analysis of the two approaches shows evidence that authoring using
the SimStudent approach may yield improved authoring efficiency over the stan-
dard Example-Tracing approach. This efficiency gain was because SimStudent
only required feedback, instead of demonstrations, when it had applicable pro-
duction rules. Providing feedback (2.4 sec) takes much less time than performing
a demonstration (8.8 sec for Example Tracing and 10.4 sec for SimStudent), so
this results in a substantial decrease in authoring time. If SimStudent was used
solely as a way to improve the efficiency of producing behavior graphs for an
Example-Tracing tutor (and not as a way to author more general productions),
then it appears authoring efficiency would improve.

When analyzing the model quality of the two approaches, it is important to
note that by the end of the authoring process both tutors achieve 100% step and
recall scores. However, the process each approach takes to get to 100% is quite
different. Figure 4 shows that the Example-Tracing tutor linearly progresses
towards perfect scores. Such linear progress is to be expected because it achieves
perfect step and recall on all problems that have been authored and 0 step and
recall on all problem that have not been authored.

For the SimStudent approach the progression is much different. After the
first problem has been authored SimStudent has approximately 40% step and
recall scores on the entire set of 20 problems (much larger than the 5% scores for
Example-Tracing). This increase is due to the fact that SimStudent is (attempt-
ing to) learn general rules from the first problem and some of those rules transfer
to the steps in other problems that have similar demands (e.g., knowing that
the problem is done when you have x equals some number). After the first prob-
lem, SimStudent’s step and recall scores jump every time it sees a new problem
type because SimStudent learns new production rules to solve these new types



Fig. 4. The step and recall scores computed over all 20 problems after each problem has
been authored (the x axis is # of problems authored so far). The Example-Tracing step
and recall scores are identical at all points and are just shown with a single line. There
is a slight increase in the slope of the Example-Tracing line at problem 12 because the
problems transition from one to two step equations.

of problems (such as adding or dividing) that are useful in solving subsequent
problems.

The greater generalization that SimStudent demonstrates within the 20-
problem it gets trained on also applies beyond those 20 problems. That is,
whereas the Example-Tracing model can only tutor on these 20 problems, the
SimStudent model will work on a wider set of problems. For example, the Sim-
Student model can tutor problems of the same type that have different numbers
and minor variations of these problems, such as “(x+2)=9” or “2+x=9.” This is
why we see plateaus in Figure 4 where SimStudent has already learned how to
solve novel problems of the same type. Additionally, SimStudent can tutor some
of the steps of more complex problems (e.g., finishing “5x + 10 = 7x” after 7x
has been been subtracted from both sides) thus saving time in authoring those
more complex problems.

Interestingly, we also observed that as SimStudent gets tutored on new prob-
lems its Step score sometimes decreases for previously tutored problems (though
never enough to regress below the progress of Example-Tracing). This regression
occurs because SimStudent is biased to learn the most general production rule
conditions from the examples it sees and thus often overgeneralizes in its early
rule acquisition. For example, when generalizing the conditions on the divide
rule after getting positive feedback (e.g., when entering divide 2 for 2x=10 –
problem #11), SimStudent may learn a rule without a pre-condition specifying
a need for a coefficient and thus apply too broadly (e.g., divide 2 for x-2=9).
In general, this results in behavior where SimStudent tries to apply productions
where they are not applicable, such as trying to add on previous subtraction
problems. This overgeneralization might be desirable when trying to model stu-
dent errors (an application for which SimStudent has been used in the past), but
when authoring an expert model of a tutor a decrease in step score on previously
authored problems is not desirable. One way to minimize this effect would be to



tutor problems in an interleaved vs. blocked fashion, as suggested by previous
work [14]. By regularly returning to older problem types, SimStudent can receive
negative feedback in the cases where it has overgeneralized. Alternatively, other
approaches could be used to limit SimStudent’s overgeneralization, such a using
prior knowledge [15] to constrain the generalization.

One limitation of this analysis is that it does not account for the time it takes
to develop domain predicates and primitive function operators for the SimStu-
dent system, which are used for production rule learning. These are short pieces
of code (roughly similar to writing functions in an Excel spreadsheet), but they
do add development time that is not needed in the standard Example-Tracing
approach. Despite this additional start-up cost, given the slopes of the lines in
Figure 3 the SimStudent approach should eventually result in time savings as
more problems are authored. The 16 predicates and 28 function operators used
in this study [12] were developed for the algebra domain, but some may be appli-
cable in other domains. Nevertheless, many domains will require new predicates
and functions to be hand authored by someone with technical expertise, and this
knowledge would need to be tested to ensure that it provides adaquate cover-
age of the given domain. Li and colleagues [16] have demonstrated how domain
specific predicates and functions can be automatically acquired, eliminating or
reducing this start-up knowledge engineering, but more work is still needed to
demonstrate broader generality of this approach.

To summarize, we found that SimStudent decreases the amount of time
needed to author a tutor over the standard Example-Tracing approach. This
result is mainly due to the fact that less demonstrations are required with the
SimStudent architecture. We also found that by the end of tutor authoring both
approaches had equivalent model quality. Furthermore, we showed evidence that
SimStudent produces a model that is more general than the specific demon-
strations it sees, bridging the gap between an Example-Tracing Tutor and a
full-fledged Cognitive Tutor. In some cases SimStudent overgeneralized, and we
suggest ways that these overgeneralizations might be reduced. In conclusion,
SimStudent appears to be a promising approach for reducing authoring time
and producing more general models than standard Example Tracing.
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