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Abstract 

Researchers have developed cognitive systems capable of human-level performance at complex 

tasks, but constructing these systems required substantial time and expertise. To address this 

challenge, a new line of research has begun to coalesce around the concept of cognitive systems that 

users can teach rather than program. A key goal of this research is to develop natural approaches for 

end users to directly train these systems to perform new tasks. However, there does not currently 

exist a language for describing the key components of cognitive system training interactions and 

how these components relate to the concept of naturalness for end users. This paper begins to explore 

this gap. To lay the foundation for this exploration, we review relevant prior machine learning and 

interaction frameworks as well as the human-computer interaction literature to identify character-

istics of systems that have historically been natural for end users to interact with. Based on this 

review, we propose the Natural Training Interactions (NTI) framework, which decomposes 

cognitive system training interaction into patterns, types, and modalities, all of which support the 

acquisition of different kinds of knowledge. Finally, we discuss how this framework characterizes 

existing research within this space and how it can guide future research.  

1.  Introduction 

In recent years, there has been a growth of research and development in the area of cognitive 

systems (Langley, 2012), with prior demonstrations showing that it is possible for cognitive 

systems to achieve human-level performance at complex tasks (e.g., Jones et al., 1999; Mcdermott, 

1980). However, cognitive systems still remain largely out of reach for the general public (Laird et 

al., 2017). A major factor contributing to this disconnect is that our daily lives are filled with a wide 

range of tasks across multiple domains, whereas today’s state-of-the-art cognitive systems are 

implemented to perform specific tasks in specific domains. Extending specialized cognitive 
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systems to support a wider range of tasks requires substantial time and expertise. For example, the 

base IBM Watson system that famously beat two Jeopardy! champions required over a century of 

combined development time by artificial intelligence experts. 

 To address this challenge, cognitive systems researchers have begun exploring approaches for 

users to create and extend the capabilities of cognitive systems by teaching them, rather than by 

programming them. This emerging area of research, which includes approaches such as Interactive 

Task Learning (Kirk & Laird, 2014; Laird et al., 2017) and Apprentice Learning (Maclellan, 2017; 

Maclellan, Harpstead, Patel, & Koedinger, 2016), aims to develop the computational and cognitive 

theory needed for building systems that support natural interactions and that possess general 

capabilities for learning across a wide range of domains and contexts. Similar to how research and 

development on computing hardware enabled the transition from corporate mainframes to personal 

computers, this research area aims to support the transition from monolithic cognitive systems (e.g., 

Watson) to personal cognitive systems (e.g., companion agents, Forbus & Hinrichs, 2006). 

 The literature contains several examples of teachable cognitive systems (Hinrichs & Forbus, 

2014; Kirk & Laird, 2014; Maclellan et al., 2016) and each one implicitly instantiates a training 

paradigm. However, we lack a common language for discussing existing training paradigms, 

engaging in scientific discourse over their structures, and for supporting the systematic translation 

and reuse of their components. In this paper, we take the first steps towards creating such a 

language, which we present in the form of a framework. Additionally, prior work has generally 

focused on the perspective of the learning agent and its mechanisms rather than the teaching user 

and their interactions. Instead, we adopt a user-centered approach for teaching cognitive systems 

and center our framework around the question of what makes training interaction natural for human 

teachers. In doing so, we draw on the human-computer interaction perspective that an 

understanding of interaction is central to the design and development of usable technology. 

Ultimately, we intend this work to lay the foundation for the development of personal cognitive 

systems that users can naturally teach. 

2.  Why Develop a Framework? 

The notion of decomposing human-agent interactions using a framework is not novel in itself and 

several decompositions exist in the literature (Bartneck & Forlizzi, 2004; Laird et al., 2017; 

Sheridan, 1992). However, we have found that existing frameworks provide an insufficient 

theoretical and practical basis for describing existing teachable cognitive systems and ultimately 

for designing novel cognitive system training paradigms that are natural and efficient for end users. 

 For example, one of the most common distinctions in the machine learning literature is between 

supervised, unsupervised, and semi-supervised approaches (Bishop, 2016). While this distinction 

appears to refer to the amount of training required by users and to map each level of supervision to 

the appropriate class of learning algorithms, the classical supervision dimension is actually 

independent of the user—it distinguishes on whether there are privileged attributes (typically 

prediction attributes) and whether ground truth values are available for them. From a cognitive 

system design perspective, it is possible to use supervised approaches without user involvement, if 

ground truth labels are available by other means, and unsupervised approaches with user 

involvement, if the user is annotating examples. Thus, these traditional distinctions are misaligned 
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for providing guidance on the design of cognitive system training paradigms. Other traditional 

machine learning distinctions, such as incremental vs. nonincremental or classification vs. 

regression, suffer from similar problems—whether a system is using one approach or another is 

largely indistinguishable to users. In general, these kinds of machine-learning distinctions place the 

emphasis on the learning mechanisms rather than on the user and their training interactions. 

A more relevant decomposition comes from Laird et al.’s (2017) review of interactive task 

learning, which divides task learning approaches by the mode of communication (natural language 

or demonstration) and the type of knowledge taught (goals, concepts, actions, and procedures). We 

view these distinctions as much more practical for cognitive system design because they better 

align with training interaction design choices (e.g., which modality a user experiences). 

Additionally, this distinction provides a basis for constructing theoretical hypotheses regarding the 

relationship between modality and type of knowledge being transferred. However, we claim that 

more guidance is needed. For example, this prior work provides little discussion regarding how to 

structure training of particular kinds of knowledge within particular modes. Additional components 

are needed to describe when and how the user and system should act in different situations, such as 

interaction patterns. Additionally, we argue that Laird et al.’s modality should be further 

distinguished between the type of interaction being performed and the modality it takes because it 

is possible for interactions to be communicated via different modalities, such as a demonstration 

(an interaction type) being communicated using sketch, speech, or a graphical user interface 

(different modalities).  

Another related line of work is Bartneck and Forlizzi’s (2004) human-robot interaction 

framework, which has categories for patterns—called norms—and modalities. However, this 

framework focuses on robot’s social interactions with humans more generally, rather than training 

interactions specifically, and so does not have dimensions for the types of knowledge being taught 

as seen in Laird et al.’s (2017) review. Additionally, like the Laird et al. work, it lacks a dimension 

for interaction types, which we claim provides an important intermediate layer of abstraction 

between patterns and modalities. Finally, as their work emphasizes physical robotics it also contains 

dimensions that are related to a robot’s physicality (e.g., whether the robot’s form is abstract or 

anthropomorphic). Our work is less concerned with the physical embodiment of agents, but it is 

not incompatible with our current thinking.  

We also believe it is worth mentioning Sheridan’s (1992) supervisory control framework and 

VanLehn’s (2006) model of tutoring system behavior, because they provide a broader context for 

training interactions. In particular, Sheridan views “teaching” as an important component of 

effective human supervisory control systems, along with “planning”, “monitoring”, “intervening” 

and “learning.” However, his work primarily describes teaching as the process by which a human 

supervisor directly programs a system with the desired knowledge. Our work aims to provide a 

means by which human operators might more naturally teach a system without the technical 

knowledge necessary to program it—ultimately enabling the creation of more effective supervisory 

control systems. In contrast to Sheridan’s work, which explores the situation of a human teacher 

and a machine student, VanLehn describes the behavior of computer tutoring systems that teach 

human students. His work distinguishes between the outer teaching loop, where a teacher models 

student knowledge over time and selects problems for a student to perform that appropriately 

challenge their current abilities, and the inner teaching loop, where a teacher provides immediate 
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instruction and guidance to students regarding how to correctly complete each problem. In general, 

our current work focuses on the inner teaching loop—or the training interactions with a system on 

a situational basis—and does not attempt to characterize how a teachable system should situates 

within the outer teaching loop, which would include estimating system knowledge or deliberately 

select training problems, or within supervisory control more broadly, which would include 

additional issues such as monitoring and control. However, we acknowledge that any teachable 

system will ultimately be embedded within these greater contexts. 

Given the context of this prior work, our goals in proposing a new framework are threefold. First, 

we hope to draw attention to the exciting nexus of cognitive system and human-computer 

interaction research, which ultimately has the potential to increase the accessibility and broader 

adoption of cognitive systems technology. Second, we aim to provide a common language for 

describing cognitive system training interactions that enables the framing of hypotheses regarding 

which means of training are more natural and efficient for end users in different situations. Finally, 

we intend our framework to support the design of cognitive systems by defining the space of 

training interactions components that can be translated and reused across different systems. While 

many existing frameworks share features with the one we propose here, their focus is either more 

general (interaction broadly) or directed toward different kinds of interaction (non-training 

interactions). Thus, we aim to combine the best of these prior ideas in our framework and present 

a novel perspective on interaction that is better aligned with our high-level goal of building 

cognitive systems that are natural for end users to train. 

3.  What Makes an Interaction Natural? 

In order to create an initial framework for natural training interactions, we must first contend with 

what it means for an interaction to be natural. While it is common to think of gesture and speech as 

lending naturalness to an interaction, the prior literature highlights that an interaction is not 

necessarily natural by virtue of its physical modality. Norman (2010) argues that so-called ‘natural’ 

user interfaces (e.g., speech- and gesture-based) are not inherently more natural than graphical ones 

(e.g., screen-based widgets). For example, gestural interfaces lack the affordances to let users know 

what gestures they support, whereas graphical user interface widgets, such as buttons, readily 

advertise their supported interactions. In general, this work suggests that the naturalness of a 

modality alone is neither necessary nor sufficient for making an overall interaction natural. 

Given that naturalness does not derive from modality, then what makes interaction natural? To 

address this question, we reviewed the HCI literature on natural interactions and identified four 

common characteristics of systems that support naturalness: they (1) support the goals of users, (2) 

do what users expect, (3) lets users work the way they want, and (4) leverage users’ experience to 

minimize training. In this section, we review each of these characteristics. 

Supports the goals of users. Systems that offer natural interactions should support what users 

want to do (i.e., their goals). One temptation in developing these systems is to overemphasize ease 

of use at the expense of limiting what users can achieve. Myers, Hudson, and Pausch (2000) refer 

to this balance as the threshold and ceiling of tools. Thresholds refer to the barriers a user must 

overcome to use a tool, whereas the ceiling describes what the tool lets users do. Many systems that 

attempt to support natural interactions emphasize low thresholds, but often ignore the ceiling. For 
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example, it is easy to interact with Apple’s Siri, but it only supports built-in commands—it is unable 

to learn new ones. To overcome this risk, we should develop systems with end-user goals and 

intents in mind (e.g., the desire to teach Siri new user-defined commands), so that the developers 

can ensure they do not limit users’ capabilities. Typically, increasing the generality of a learning 

system comes at the cost of reduced system robustness; however, a key point of this prior work is 

that developers can strike a better balance between these two outcomes by building systems to 

support the right subset of users’ goals, rather than simply supporting more goals. 

Does what users expect. A common theme in research on natural interactions is an emphasis on 

the users’ expectations for a system (Myers, Pane, & Ko, 2004). Humans typically follow patterns, 

scripts, or norms when engaging in everyday interactions (Bicchieri, 2006), which make it possible 

for those involved in the interaction to know how to respond. For example, tutors generally expect 

that their pupils will attempt to solve problems before asking for help. Systems that aspire to 

naturalness should support naturally occurring patterns of interaction and be aware of users’ 

expectations within such patterns. It is worth noting that these patterns may arise from a user’s 

particular cultural background (e.g., what roles their culture ascribes to teachers and students) or 

from their personal experiences (e.g., whether they are a Mac or PC user). Additionally, systems 

attempting to be natural should not require users to learn new (unnatural) patterns of interaction—

deviations from typical scripts make it difficult to know what the system will do next and how to 

respond accordingly. 

Lets users work the way they want. Given that natural systems support users’ goals they should 

also let users execute those goals the ways they prefer or expect to. A key idea from the ubiquitous 

computing literature is that computing systems should become invisible because they seamlessly 

support the ways users want to do something (Weiser & Brown, 1996). They should not impede 

users or force them to achieve goals in unpreferred ways. For example, a common trend is to build 

systems around a speech interaction paradigm, but there are many situations where speech is an 

unnatural form of communication. In his study of architectural designers, Schön (1983) found that 

sketches of designs often better supported communication and reasoning than verbal articulations. 

This finding suggests that systems aiming to support natural architectural design should prefer 

sketch-based interactions over speech. 

 Leverages users experience to minimize necessary training. One of the most pervasive ideas 

within research on natural user interfaces is the idea of instant expertise (Wigdor & Wixon, 2011), 

or the idea that users should not have to learn how to control a system because they have immediate 

familiarity with its modality. In the words of Buxton (Larsen, 2010), “[natural user interfaces] 

exploit skills that we have acquired through a lifetime of living in the world, which minimizes the 

cognitive load and therefore minimizes the distraction.” Common approaches within this space 

include voice- and text-based natural language and gestural interfaces that take advantage of users’ 

lived experiences about interacting with other people. Additionally, many users have extensive 

training with artificial interfaces, such as QWERTY keyboards, that may be natural for many 

application contexts, so it is worth noting that these artificial modes of interaction should not be 

discounted. 
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4.  A Preliminary Framework for Cognitive System Training Interactions 

In order to design cognitive systems that support natural training interactions, we require a better 

understanding of how these systems could hypothetically interact. In this section, we propose a 

framework for characterizing cognitive system training interactions—the Natural Training 

Interactions (NTI) framework shown in Table 1—that aligns with the four characteristics noted in 

the previous section. We do not intend for this framework to be complete, but we hope that it 

provides a useful initial language to discuss naturalness in the context of cognitive systems and 

their instructional interactions. 

At a high-level, the framework is built on the assumption that the goal of training is to change 

some aspect of an agent’s knowledge. To update knowledge, agents and trainers interact according 

to instructional patterns. Within patterns, trainers and agents employ in several types of interaction, 

and these interactions can be done through various modalities. We review each aspect of the 

framework in turn. 

 Knowledge. We assume that the goal of any training interaction is to update the learner’s 

knowledge. There are many types of knowledge that might be included in a cognitive system. 

Within the literature, there are several generally accepted types of knowledge (Laird, Lebiere, & 

Rosenbloom, 2017). For our preliminary framework, we include six such kinds of knowledge:  

• goals, which fully or partially describe desirable states of the world;  

• beliefs, which represent an agent’s current world view;  

• concepts, which support semantic inference and enable an agent to augment its world view with 

additional non-observable information;  

• experiences, which organize past situations and problem-solving episodes;  

• skills, which describe procedures for changing the world and updating beliefs; and  

• dispositions, which specify an agent’s problem-solving orientation (e.g., whether to explore 

further or exploit existing knowledge).  

Table 1. The natural training interactions framework. 

Knowledge Patterns Types Modalities 

• Goals 

• Beliefs 

• Concepts 

• Experiences 

• Skills 

• Dispositions 

• Passive Learning 

• Operant Conditioning 

• Direct Instruction 

• Apprentice Learning 

• After-Action Review 

• Collaborative Learning 

• Programming 

• Command 

• Clarify 

• Acknowledge 

• Inform 

• Spotlight 

• Annotate 

• Reward 

• Demonstrate 

•  Direct knowledge 

manipulation 

• Request <type> 

• Command Line 

• Control device 

• GUI 

• Sketch 

• API 

• Gesture 

• Speech 

• Text 

• Multi-modal 
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Our current focus is primarily on symbolic forms of knowledge arising from interactions with a 

trainer, but future extensions of the framework might also include forms of knowledge such as 

probabilistic grammar knowledge for parsing English sentences or equations (Li, Schreiber, Cohen, 

& Koedinger, 2012). Further, we do not mean to imply that all cognitive systems must support all 

of these knowledge categories but rather that the nature of the knowledge being changed will likely 

dictate choices across the other dimensions of the framework. 

 Patterns. Within human-human instructional settings there are many naturally occurring 

interaction and training patterns. These patterns govern the relationship between trainer and trainee 

and establish the contours for how training interactions play out. Inspired by existing systems 

(Allen et al., 2007; Forbus & Hinrichs, 2006; Hinrichs & Forbus, 2014; Kirk & Laird, 2014; 

Maclellan et al., 2016) and models of instructional practice in humans (Chi & Wylie, 2014; 

Koedinger, Corbett, & Perfetti, 2012), our framework highlights several possible patterns. At its 

simplest, learning could be primarily passive, with agents observing training behaviors without 

agency or active input from instructors. With increased complexity, agents can have some control 

over their actions and receive rewards from an instructor (operant conditioning) or instructors can 

explicitly coach an agent, without requiring agent decision making (direct instruction). An even 

more complex pattern, apprentice learning (Maclellan et al., 2016), incorporates aspects of both 

approaches—both explicit instruction and feedback on agent actions. Additionally, many other 

instructional patterns are possible, such as after-action review, where a trainee reviews past 

experiences and an instructor provides complementary instruction, collaborative learning (Olsen, 

Belenky, Aleven, & Rummel, 2014) where both actors are trainees and learning from one another, 

and even programming, which directly manipulates knowledge structures and is probably the most 

prevalent human-computer training pattern. 

 Types. Within a pattern, an instructor and trainee engage in many types of interactions. For 

example, within the apprentice learning pattern (Maclellan et al., 2016), an instructor issues a 

command, which specifies the task for an agent to perform. If the agent does not know how to 

perform the task, then it might request a demonstration from the instructor, who provides one. On 

subsequent tasks, the agent might attempt the task (i.e., provide the instructor with a demonstration) 

and request feedback (i.e., a reward) on this attempt. Finally, the instructor provides the agent with 

the appropriate reward. Under this pattern, this process continues until the agent is correctly 

performing all of the tasks. Our framework also includes interaction types for supporting the other 

patterns. For example, Direct Instruction (Hinrichs & Forbus, 2014) lets instructors directly inform 

agents about the world (“TicTacToe is a two-player game”), spotlight agents attention on particular 

parts of the world (“This [pointing] is a block”), and annotate demonstrations (“This is the move 

action [demonstrate drawing of X on board]”) to facilitate efficient learning.  

 The types listed in Table 1 are drawn from existing systems and the literature on communicative 

acts (Allen, Blaylock, & Ferguson, 2002; Traum & Hinkelman, 1992). These include: 

• commands, which compel an agent to perform some task or take on some state; 

• clarifications, which disambiguate between competing interpretations or further elaborate or 

grounds prior interactions; 

• acknowledgments, which signal that data has been successfully received and/or processed;  

• inform acts, which provide an agent with additional information in addition to perception; 
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• spotlighting, which identifies certain elements in the environment as relevant or important; 

• annotations, which augment an agent’s current understanding with additional learning related 

information, such as skill labels or which elements of an example should be generalized; 

• rewards, which consist of correctness feedback or a numerical reward; 

• demonstrations, which are examples of behavior; 

• direct knowledge manipulation; which describe new knowledge structures or changes to 

existing structures; and,  

• request <type>, which are requests to provide any of the above types. 

This is not meant to be an exhaustive list, but is representative of the types that commonly occur in 

current practice. It is important to note that when we refer to interaction types we are interested in 

the overall instructional act being performed and not how it is being performed. For example, orders 

delivered via a command-line interface or spoken natural language are both instances of the 

command type. 

 Modalities. The different types of interactions ultimately ground out in particular modalities of 

interaction, with many different alternatives, or potentially used in combination, supporting each 

type. For example, command-line or graphical-user interfaces are both capable of supporting all of 

the interaction types listed in Table 1. Often, systems that claim to support natural interaction 

leverage modalities commonly used in human-human interaction. For example, the Microsoft 

Kinect supports gesture-based and speech-based modalities. A key aspect of modalities from our 

perspective is that they are cast in terms of what the trainer is doing and not necessarily how an 

action is being detected by an agent. For example, a gesture such as waving could be detected using 

either visual sensing with a camera or gyroscopic sensing with a wearable device (e.g., Taylor et 

al., 2017); in either case, the trainer would be using a gestural modality. 

 These four dimensions map to the four characteristics highlighted in the previous section. In 

particular, in the context of training, supporting a user’s goals consists of supporting the types of 

knowledge transference they are trying to achieve. Users’ expectations regarding training will 

derive from the social instructional patterns they have experience with. Thus, in order to naturally 

support training interactions, it is important for system designers to be aware of the interaction 

patterns that users expect. Further, users will want to interact in certain ways and system designers 

should be aware of the different types of interactions they want to perform. Finally, for each type 

of interaction, system designers should leverage modalities that draw on users’ prior experience. 

5.  Analysis of Existing Systems 

To ground the elements of our framework, we next review eight systems2 from the literature and 

identify the knowledge, patterns, types, and modalities used by each. Reviewing all machine 

learning systems is well beyond the scope of this paper, so we instead focus on a selection of 

examples that span the range of patterns from our framework and that emphasize user training 

interactions more so than their underlying machine-learning approach.  

                                                 
2 We acknowledge that some of these systems may not strictly fit Langley’s (2012) definition of cognitive 

systems, but mapping them to our framework is still informative. 
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 Our first example, is Google’s Teachable Machine.3 This system, which was built to demonstrate 

neural network learning with Google’s TensorFlow, leverages the direct instruction pattern. In 

particular, users teach the system image-related concepts (knowledge) by demonstrating (type) 

examples of the concept via the provided webcam-based GUI (modality). While this system 

resembles a more traditional, supervised learning system, it blurs some of the classical machine-

learning distinctions. For example, it is not outwardly clear to users whether the system engages in 

incremental vs. nonincremental learning. From the user perspective, the system appears to be 

incremental—the user can provide new examples at any time to update the system—but the 

underlying learning approach is opaque from the perspective of training interaction design and 

irrelevant as long as the system is responsive. Similarly, it is not clear whether the system is fully 

supervised; as far as the user is concerned, it could be learning directly from a pixel representation 

or using more complicated features pregenerated from unsupervised learning (e.g., a pretrained 

image autoencoder).  

 The Q-Learning agent used in the Sophie’s Room game (Thomaz, Hoffman, & Breazeal, 2006) 

takes a slightly different perspective on training. Like Google’s teachable machine, it emphasizes 

the teaching interactions rather than the underlying learning approach. However, this system uses 

the operant conditioning pattern to acquire cake baking skills (knowledge), where the Q-Learning 

agent demonstrates (type) actions in a simple cooking simulation environment (GUI—modality), 

such as picking or mixing ingredients and users train the agent by providing, potentially delayed, 

rewards (type) via the GUI (modality). One interesting aspect of this work is the continuous time 

nature of the training interactions. In particular, agents can take action at any time and users can 

independently provide rewards at any time, so that agents do not need to wait for user rewards or 

vice versa. Also, while this system relies on reinforcement learning, this work is quite different 

from the vast majority of such systems, such as AlphaGo (Silver et al., 2016), that get their rewards 

directly from the environment or an environment simulator. The Sophie’s Room work explores the 

use of a reward signal that comes from human trainers rather than an objective signal from the 

environment. Interestingly, Thomaz et al. (2006) found that users often provided reward signals 

that violate many assumptions underlying most reinforcement learning algorithms. For example, 

they found that users often provided anticipatory rewards to guide the system towards desired 

behavior, even though Q-learning treats rewards as feedback on prior, not future, actions.4 It is 

possible users employed anticipatory rewards to compensate for not being able to work the way 

they wanted, such as directly showing the agent the desired behavior via demonstration. 

 Another system that supports natural training interactions is SUGILITE (Li, Azaria, & Myers, 

2017). This system learns skill knowledge for performing tasks in arbitrary smartphone apps from 

commands and demonstrations (types) presented in mixed GUI + speech modalities. This differs 

from the prior systems by employing two patterns, direct instruction and programming, to support 

efficient training. Direct instruction starts when users issue a command (type) to the system using 

speech (modality). If the system does not know how to execute the command, the user demonstrates 

(type) the behavior that should be associated with the command and annotates (type) the 

demonstration via a provided GUI (modality) to specify which parts of the demonstration should 

                                                 
3 See https://teachablemachine.withgoogle.com/ 
4 Users were told this in advance, but they had no technical machine-learning expertise and likely did not 

understand the training implications. 
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be generalized (i.e., which interface constants should be replaced with variables). If the user issues 

the associated command in the future, then the system demonstrates (type) the associated 

generalized behavior back. In the event that the system exhibits undesirable behavior, the user can 

activate the programming pattern, which allows users to directly manipulate the learned knowledge 

(type) via a GUI (modality); e.g., users might delete a skill or replace a variable in a previously 

learned skill with a specific constant. SUGILITE provides this pattern for more technically 

advanced users, so that they can efficiently teach the system the behavior they want.  

 Another example of a trainable system is Betty’s Brain (Leelawong & Biswas, 2008), which was 

designed for use in K12 education. Like SUGILITE, Betty’s Brain adopts the programming pattern, 

wherein users teach Betty causal scientific concepts (knowledge) by directly manipulating her 

knowledge (type) via the provided concept mapping GUI (modality). This system exploits the 

learning-by-teaching phenomenon, so that students learn causal scientific concepts by teaching 

them to Betty. One interesting aspect is the system’s central use of the programming pattern with 

nontechnical K12 users. The computational aspect of the learning system enables the use of a 

pattern that is impossible with human-human learning. Despite the lack of a human analog, young 

users can efficiently teach Betty using this pattern, showing that natural patterns need not draw 

completely from human experience.  

 Rosie (Kirk & Laird, 2014; Mohan, Mininger, Kirk, & Laird, 2012) is a somewhat different 

example of a cognitive system that supports natural training interactions. Unlike the prior systems, 

Rosie can acquire goal, concept, and skill knowledge from mixed GUI and natural language text 

(modality) interactions with users. This system learns via a variant of the direct instruction pattern. 

Most instances of this pattern center around the teacher informing or demonstrating to the student, 

with the trainee requesting clarifications occasionally. Interestingly, Rosie inverts this emphasis, 

with most interaction centering around clarifications.5 

 For example, when learning games (Kirk & Laird, 2014), interaction starts when the teacher 

informs (type) Rosie of a game, e.g., “the game is tic-tac-toe”, in natural language text (modality). 

If it does not know the game, then it requests clarifications (type) on characteristics of the game to 

build up a complete description of it. For example, it might say, “I don’t know that game, how 

many players are there?” (text—modality). In response, the user might reply “two” (clarification—

type, text—modality). Rosie also requests clarifications (type) on legal game actions (“please start 

by teaching me the name of a legal action in the game”) as well as their parameters (“what are the 

verb and parameter arguments associated with this action?”) and constraints (“Please list all 

constraints for this parameter, such as ‘it is red’ or ‘it is on [parameter] 2’, and then finished”). 

 In another example (Mohan et al., 2012), Rosie uses a similar pattern to acquire concept and goal 

knowledge. In this case, the user might start interaction by issuing a command (type) for the system 

to perform, such as “Store the orange object” (text—modality). In response, if it does not know the 

attribute “orange”, then it might ask “what kind of attribute is orange?” (request for clarification—

type) to which the user might respond “a color” (clarification—type). Rosie also supports some 

mixed-modality interaction. In particular, it might say “I don’t see an orange object. Please teach 

                                                 
5 The authors debated whether the direct instruction label is still appropriate with this inversion and ultimately 

decided it was because Rosie adopts more conventional direct instruction behavior when it already has 
ample existing knowledge and does not require as much clarification. 
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me to recognize one” (request for clarification—type), to which the user might click on a GUI 

object and say “this is orange” (clarification—type, mixed GUI + text—modality). 

 In general, Rosie uses this clarification-guided approach to progressively transfer and ground 

concept, skill, and goal knowledge. Although Rosie supports interactive training, we do not classify 

its training paradigm as apprentice learning because it never requests or receives rewards on its 

own task-related decision making. One interesting aspect of this work is its almost universal use of 

a natural language text modality. From a user perspective, it could be difficult to transfer skill 

knowledge in this manner because tacit knowledge, such as skills or experiences, are noted for 

being challenging to articulate textually or verbally (Polanyi, 1966; Schön, 1983). In contrast, the 

text modality seems well suited for transferring concept and goal knowledge, which should be 

easier for people to state verbally. In either case, the alignment between modality and the type of 

knowledge being transferred should be investigated in future work.   

 Another related cognitive system is the Companion Architecture (Hinrichs & Forbus, 2014), 

which also uses natural language text for interaction and leverages a direct instruction pattern. 

However, it differs in some key respects. Specifically, it utilizes a multi-modal text + sketch 

interface (modality) and only acquires concepts (knowledge). In this system, users inform (type) 

the system of different concepts via text statements and sketch demonstrations and the system 

acknowledges (type) that it correctly interpreted these actions. For example, a user might inform 

the system that “Tic-Tac-Toe is a 2-player game” or "X is a player <draws X in the sketch 

interface>”, to which it would respond “OK” in both cases. Once the system has acquired these 

concepts, it compiles them into the Game Definition Language (Genesereth & Thielscher, 2014), a 

representation it leverages to play games with the user.  

 Like Betty’s Brain, SimStudent and the Apprentice Learning Architecture were built to support 

K12 education. These systems employ the apprentice learning pattern to support many aims, such 

as modeling students learning in tutors (Li, Matsuda, Cohen, & Koedinger, 2010; Maclellan et al., 

2016; Matsuda, Lee, Cohen, & Koedinger, 2009), studying the learning-by-teaching effect 

(Matsuda, Yarzebinski, Keiser, Cohen, & Koedinger, 2011), and supporting efficient tutor 

authoring (Li, Stampfer, Cohen, & Koedinger, 2013; MacLellan, Koedinger, & Matsuda, 2014; 

Matsuda, Cohen, & Koedinger, 2014). Users train an agent by presenting it with particular problems 

to solve—implicit commands (type)—within a tutor GUI (modality). When an agent lacks 

knowledge of how to solve the problem it requests a demonstration (type) from the user by popping 

up a GUI dialog message (modality). The user then demonstrates (type) a problem-solving step 

directly in the tutor GUI (modality). From these demonstrations the agent learns new problem-

solving skills (knowledge) and, in the future, demonstrates (type) steps on similar problems for the 

user. After every agent demonstration, the system requests a reward (type) from the user, who 

provides correctness feedback (reward−type) via the provided GUI (modality). This system 

effectively uses an active learning approach (Settles, 2012) that interactively requests feedback and 

examples from users when it needs them. 

 A final system, PLOW (Allen et al., 2007), claims to be a collaborative problem solver, but 

actually employs the apprentice learning pattern to acquire skills (knowledge) from mixed text + 

GUI (modality) interactions. Users start by issuing a command (type) via natural language text 

(modality), such as asking PLOW to “list all the hotels within 20 miles.” If the system already has 

the appropriate knowledge for the task, then it demonstrates (type) behavior directly in the task 
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GUI (modality), such as looking up and listing the hotels within this distance. If the demonstrations 

are incorrect, then the user provides negative feedback, or reward (type), by saying “this is wrong” 

(text—modality). If the system does not know what to do, then the user provides a demonstration 

(type) of the desired behavior, such as looking up the appropriate list of hotels in a web browser 

GUI (modality) and an annotation (type) on the demonstration by specifying, “let me show you 

how to list the hotels within 20 miles” (text—modality). When the user provides demonstrations, 

the system can also request clarifications (type) related to the demonstrations. 

 Allen et al. (2007) performed preliminary user testing where they compared PLOW to variants 

with different training interaction patterns. Specifically, one system learned by passively observing 

users behavior within the GUI (the passive learning pattern), another had a sophisticated GUI for 

authoring task macros (the programming pattern), and a third had users describe skills to the system 

completely in natural language (the direct instruction pattern). Allen et al. found that users preferred 

the base system to its variants and that it performed better on some initial usability metrics. 

Although not conclusive, these preliminary findings suggest that the apprentice learning pattern 

(used by PLOW) may be more appropriate for skill learning than the passive learning or direct 

instruction patterns. 

6.  Discussion and Future Work 

In proposing our initial framework, we aimed to achieve three objectives. First, we attempted to 

highlight what we view as a key opportunity within cognitive systems research: to better understand 

the space of training interaction and develop cognitive systems that are natural and efficient for 

users to teach and interact with. Recent research efforts, such as Rosie (Kirk & Laird, 2014), the 

Companion Architecture (Hinrichs & Forbus, 2014), and the Apprentice Learning Architecture 

(Maclellan et al., 2016), have begun exploring different combinations of patterns, types, and 

modalities to support training interactions with end users. Each of these systems represent particular 

choices across the dimensions of our framework. To reach a more complete understanding of 

training interaction design, researchers should explore additional approaches and new combinations 

of approaches to explore the space more broadly and discover more natural means for training 

cognitive systems. 

 Second, organizing training interactions along an orthogonal set of dimensions enabled a modular 

approach to the challenge of building cognitive systems to support natural training interactions. 

Individual researchers or developers need not contend with the whole problem and can instead 

focus on addressing subproblems. For example, one team of researchers might investigate which 

patterns are best for acquiring skills, whereas another team might investigate which patterns are 

best for acquiring concepts. Because these decisions are orthogonal, each team can benefit from 

the other’s work and integrate their findings within the common structure of the framework to 

support the development of systems that can naturally learn both types of content. Thus, the 

framework supports the unification of independent research efforts, even if they do not explicitly 

describe their work within this framework. 

 Finally, towards the goal of actually building cognitive systems that people can naturally train, 

we intended our framework to provide a language for formulating scientific hypotheses about how 

to best achieve natural interactions. Much of the existing work implicitly assumes that choosing 
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natural approaches for only one component of the framework (patterns, types, or modalities) will 

establish the overall naturalness of a system. For example, Hinrichs and Forbus (2014) emphasize 

the use of multiple natural modalities, such as text and sketching, whereas MacLellan et al. (2016) 

emphasize the use of a natural pattern. Central to our framework, however, is the hypothesis that 

different combinations of patterns, types, and modalities of interaction are better suited for updating 

different kinds of knowledge. 

 Thus, we believe that systems which users find natural to teach will not only support a wide range 

of patterns, types, and modalities, but flexibly choose the appropriate combination based on the 

type of knowledge being communicated, the trainer’s preference, and other contextual factors. 

There is evidence that learning in humans follows a similar logic, in that different kinds of 

knowledge are best taught by different forms of instruction (Koedinger et al., 2012). Given that an 

artificial intelligence need not represent a natural system, there is no inherent reason to transfer this 

logic (Simon, 1983). However, if we want to support humans in training such systems naturally, 

then it becomes important to understand these relationships and how they might impact different 

kinds of training. In conclusion, we hope our framework will focus attention on this issue, provide 

a language for discussing training interactions and their naturalness, and guide future research on 

the exciting frontier of personal cognitive systems. 
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