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Abstract. One aim of the Generalized Intelligent Framework for Tutoring 
(GIFT) is to reduce the time and cost of authoring Intelligent Tutoring Systems. 
Recent work with SimStudent offers a promising approach to the efficient au-
thoring of expert models and misconception libraries. SimStudent works by in-
ducing general production rule models from author demonstrations and feed-
back. Importantly, the demonstration and feedback takes place directly in the 
tutor interface and requires no programming. Empirical results have shown that 
models induced by SimStudent fit student data better than models hand-
authored by domain experts. Additionally, an analysis with the Goals, Opera-
tors, Methods, and Selection rules (GOMS) model showed that authoring with 
SimStudent is more efficient than authoring with current approaches, namely 
Example-Tracing. This paper reviews those results and provides an example of 
constructing a simple algebra tutor with SimStudent. This work with SimStu-
dent presents several concepts that may be useful in the design and develop-
ment of GIFT: modularization to allow for tutor authoring by non-
programmers, generation of likely student misconceptions as a byproduct of ex-
pert-model creation, and methods for comparing and evaluating authoring tools. 
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1 Introduction 

Intelligent tutoring systems are effective at improving learning [1-4], but development 
costs remain a formidable obstacle to their general adoption [5]. As an example, de-
spite widespread use of math Cognitive Tutors (more than 500k students per year 
complete a Carnegie Learning tutor course), they have not been widely used more 
broadly (e.g., in online education platforms such as Khan Academy, Coursera, etc.), 
perhaps because their learning benefits are not thought to outweigh the costs of their 
development. Authoring costs are particularly pronounced for massive online educa-
tion platforms, which have large quantities of content that vary widely across domains 
(Khan academy has about 500 hours of videos spread over 40 units in Math, Science, 



Economics, and Humanities). Similar to the goals that motivate GIFT, our work aims 
to increase the value of intelligent tutoring systems by improving both sides of the 
cost-benefit equation - building higher quality tutors that lead to more robust learning 
while also decreasing authoring time.   

 
SimStudent is an outgrowth of the Cognitive Tutor Authoring Tools (CTAT) [6, 7]. 

CTAT provides tools for constructing drag-and-drop tutor interfaces, authoring Ex-
ample-Tracing Tutors, and creating an expert model for Model-Tracing Tutors. The 
Model-Tracing Tutor is more general, but more costly to produce. Authoring in this 
paradigm consists of manually constructing production rules that define which actions 
are appropriate given the current problem-solving state; e.g., if there is a constant on 
both sides of the equation, then subtract one of those constants from both sides. These 
production rules can generalize to a wide range of problems, as long as the ‘if' part of 
the production rule is applicable. Authoring an Example-Tracing Tutor consists of 
demonstrating every possible action for every state directly in the tutor interface (e.g., 
for the equation 4 + x = 2x - 5, the author would demonstrate subtracting 4 from both 
sides). These demonstrations comprise a behavior graph, which specifies which ac-
tions are legal in each state. While authoring these tutors is generally much easier 
(students can learn to build example-tracing tutors in an afternoon [7]), they are much 
more specific than Model-Tracing Tutors. Demonstrations with Example-Tracing 
tutors can be generalized to new problems that share the same underlying structure 
(e.g., demonstrating 4 + x = 2x-5 could be generalized to 10 + x = 3x - 6 but not to 4 
+ x = 5) using a technique called “mass production,” but problems with different 
structures require additional demonstrations. These types of tutors are two ends of a 
spectrum: Model-Tracing Tutors are difficult to produce, but they are quite general; 
Example-tracing tutors are easy to produce, but are quite specific. Our goal is to com-
bine the best of both worlds in an authoring tool that makes general tutors easy to 
build. 

 
SimStudent, our authoring system [8], uses machine-learning techniques to try and 

bridge the gap between Example-Tracing Tutors and Model-Tracing Tutors. It does 
this by learning general production rule models from demonstrations and feedback. In 
this paper, we summarize how this system works, give a step-by-step example of how 
a tutor might be authored with SimStudent, and discuss the different lines of research 
we are currently pursuing with SimStudent. 

2 The SimStudent Architecture 

SimStudent1 was created for three purposes: 1) to advance theories of human learn-
ing; 2) to explore the learning-by-teaching phenomenon; and 3) to improve the au-
thoring of intelligent tutors. We briefly review the SimStudent architecture, discuss 
prior findings, and then describe how SimStudent can be used to author tutors. 

                                                             
1 For more details on SimStudent see http://www.simstudent.org/ 
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Fig. 1. The knowledge (squares) and learning processes (circles) utilized by the SimStudent 

system. 

SimStudent learns from four sources of knowledge [8] (see Figure 1). Feature predi-
cates and primitive functions are built before SimStudent starts learning, and User 
Feedback and User Demonstrations come from SimStudent's learning environment. 
First, SimStudent needs to recognize relevant features of the tutor interface (e.g., 
numbers, operators, the equals sign). These ‘feature predicates’ are constructed by 
writing small Java functions, the equivalent of writing regular expressions, to identify 
key features in the interface. Second, SimStudent starts with a certain level of prior 
knowledge (e.g., SimStudent for algebra can add two numbers at the beginning); these 
‘primitive functions’ are also small Java functions, similar to basic Excel formulas, 
for performing mental and interface actions. Third, within the learning environment, 
SimStudent is provided with ‘user demonstrations.’ These consist of the author solv-
ing sample problem steps. Fourth, SimStudent learns from ‘user feedback,’ which is 
yes/no correctness feedback when it attempts steps in a problem. After tutor problems 
have been demonstrated, SimStudent will learn new rules, attempt to apply them to 
new problems, and will ask the author for verification that the rules were applied cor-
rectly. Based on this author feedback, the condition statements of these rules are re-
fined.  

 
Given these four sources of knowledge, SimStudent employs three learning mech-

anisms to produce general production rules. These three types of learning are called 
‘how’ learning, ‘where’ learning, and ‘when’ learning. How learning identifies se-
quences of primitive function operators that would have plausibly produced the user 
demonstrations (e.g., going from 4+4x = 5 to 4x = 1 could be caused by subtracting 
the constant ‘4’ from both sides or by subtracting the coefficient of ‘x’ from both 
sides). How learning generates the ‘then' part of the production rules. Where learning 
identifies which interface elements are relevant to each demonstration, (e.g., learning 



that all the interface elements in the last used row are relevant). Lastly, When learning 
identifies the conditions under which a given sequence of operators is applicable. The 
Where and When learning jointly produce the ‘if' part of a production rule. As the 
author demonstrates problem steps the three mechanisms learn new production rules. 
Once production rules are learned, SimStudent attempts to use those rules to solve 
practice problems. The rules are refined when the author provides correctness feed-
back on each step of the problem.  

 
SimStudent enables us to test if the How, Where, and When mechanisms are rea-

sonable approximations of how human students learn from demonstration and feed-
back. Indeed, empirical work indicates that models generated by SimStudent better fit 
student tutor data than models hand authored by domain experts [9]. These results 
were replicated across three different domains (algebra, stoichiometry, and fraction 
addition). SimStudent may produce better results because it is less susceptible to “ex-
pert blind spots” [10] than domain experts. These blind spots refer to knowledge that 
an expert doesn't realize they know. For example, a domain expert might view -x = 4 
and -1x = 4 as equivalent, but the SimStudent model recognizes that additional 
knowledge is needed in the first case because the -1 coefficient is implicit. Improved 
student models are likely to result in better student learning [11] because they guide 
interface design, problem selection, and assessment of student knowledge.  Continu-
ing the example above, the original model for students’ extraction of a negative coef-
ficient lumped -x together with -3x, -5x, etc. That model assumes that practice on any 
of those examples would lead to improved performance on other examples within the 
group. In contrast, the SimStudent model would provide additional practice for -x and 
would not assume automatic transfer from -3x to -x. These findings, that SimStudent 
can create better models and that better models result in better student learning, show 
promise for leveraging SimStudent to create more effective tutors. 

 
In addition to theory building, SimStudent has been used as a teachable agent.  In-

stead of asking students to learn directly from the tutor, students are tasked with 
teaching SimStudent so that it can pass a quiz on the domain content. The learning-
by-teaching paradigms aim to take advantage of the “protégé effect,” so called be-
cause students have been found to be more motivated to learn on behalf of a teachable 
agent than to learn for themselves [12]. Results [13] suggest that learning-by-teaching 
is as effective as a Cognitive Tutor for students who have reached a basic level of 
competency. This work seems to imply that we don’t need an expert model to teach 
students since they can learn simply by teaching the SimStudent agent. However, the 
students are still receiving feedback on how the SimStudent agent does on each quiz, 
and grading the quizzes is done using an expert model. Therefore, it is still necessary 
to author good expert models, even in a learning-by-teaching paradigm.  
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Fig. 2. SimStudent asking for correctness feedback. 

 
A third line of SimStudent research investigates the authoring of expert models for 

use in both tutoring systems and teachable agents. One study found that higher quality 
models are produced by providing SimStudent with both demonstrations and feed-
back, compared with only giving it demonstrations [8]. A follow up study showed that 
authoring an Algebra tutor with SimStudent is more efficient than authoring an equiv-
alent tutor using Example Tracing and that the model learned by SimStudent is more 
general [14], when the background knowledge had already been authored.  Overall, 
research on the SimStudent system suggests that it might be a viable tool for efficient-
ly authoring tutoring content that is general and of high quality.  

3 An Example of Authoring with SimStudent 

Authoring with SimStudent is similar to authoring with CTAT. Details of authoring a 
tutor with CTAT are written up elsewhere (http://ctat.pact.cs.cmu.edu/), so we focus 
on the aspects of authoring that are unique to SimStudent: authoring background 
knowledge and tutoring the SimStudent system interactively. This example shows 
how to construct a simple algebra tutor using SimStudent.  

3.1 Authoring Background Knowledge 

The SimStudent system separates the authoring of background knowledge from the 
construction of the expert model. Constructing the background knowledge requires 
basic programming skills; since the expert model is created through interactive tutor-
ing, it requires no programming at all. The first class of background knowledge, fea-
ture predicates, are small Java functions that return True if a feature is present in an 
interface element and False otherwise. One example might be the “HasCoefficient” 
feature, which would be True for 3x but False for x + 1.  SimStudent uses feature 
predicates to recognize important features in the tutor interface. For the algebra do-
main we have authored 16 feature predicates. These predicates tend to be relatively 
general, so they can be reused from one tutor to the next. 



 
The second class of knowledge, primitive function operators, are similar to the fea-

ture predicates, in that they are small java functions, but they take two inputs (taken 
either from interface elements or from the outputs of other primitive function opera-
tors) and return a single value. One example of a primitive function operator is 
“AddTerm”: when given two numbers it returns their sum. These operators enable 
SimStudent to explain demonstrations and to take actions in the tutor interface. For 
the algebra domain we have authored 28 primitive function operators. Similar to fea-
ture predicates, primitive functions tend to be reusable across tutors. 

3.2 Tutoring SimStudent Interactively 

After constructing background knowledge, authoring is done in the tutor interface 
using CTAT and running SimStudent's interactive learning module. SimStudent tries 
to solve the problem loaded into the interface by firing an applicable production rule 
and taking the step determined by the rule. After each step it asks for feedback on the 
correctness of that action (see Figure 2). If the author provides positive feedback to 
SimStudent, then it will continue solving the problem. If the feedback is negative, 
SimStudent will try other applicable production rules.  When it runs out of production 
rules that apply to the current step, it will ask the user to do that step and then use its 
learning mechanisms to learn a new production rule from that demonstration (see 
Figure 3). After tutoring, SimStudent produces a behavior graph (shown on the left 
side in Figures 2 and 3) and a production rule file. The behavior graph can power an 
Example-Tracing tutor and the production rule file can run a Cognitive Tutor.  
 

 
Fig. 3. SimStudent asking for a demonstration. 

4 Future Work 

The SimStudent architecture shows promise as a tool for simultaneously increasing 
authoring efficiency and model quality [8, 14], but more research still needs to be 
done.  In terms of efficiency, few studies have directly compared the efficiency of 
different authoring approaches. We are exploring different usability and interaction 
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models as a method for evaluating different approaches (e.g., the goals, operators, 
methods, and selections rules models). In terms of model quality, we are working to 
identify key performance metrics for general models.  For example, in addition to 
evaluating accuracy and recall of a model for correct behavior, we are also looking at 
accuracy and recall of incorrect behavior. SimStudent can learn incorrect productions 
from correct instruction by making incorrect induction due to suboptimal background 
knowledge [15]. These plausible, but incorrect, inductions can be used to identify bug 
rules that might be missed by experts. As an example, when SimStudent is taught to 
divide both sides by 3 for the problem 3x = 6, it might incorrectly learn a rule for 
dividing both sides by any number on the left side of the equation (an error students 
commonly make). When SimStudent incorrectly solves a subsequent problem using 
this bug rule, it will receive negative correctness feedback and refine its rule to only 
apply to dividing by the coefficient. SimStudent could be modified to request a hint 
message for this misconception during authoring, such as text pointing out that the 
both sides of the equation are divided by the coefficient of x, not just any number. 
After this modification, it would be worth evaluating how authoring with SimStudent 
compares to Example-tracing or hand authoring in terms of number of bug rules iden-
tified.  

 
In addition to evaluating efficiency and quality, we are also interested in exploring 

how to increase SimStudent's generality. To accomplish this, we have been exploring 
approaches for automatically learning the background feature predicates from tutoring 
[16]. By reducing or eliminating the need to author this predicate knowledge, we will 
make it easier to apply SimStudent to new domains. Additionally, we have been ex-
ploring how this feature predicate learning can be used to apply SimStudent to learn-
ing models for open-ended tasks, such as educational games [17].  

 
Utilizing these new improvements, we are exploring the effectiveness of the Sim-

Student architecture for authoring content for a MOOC platform, such as Khan Acad-
emy. We are planning to recreate some of the MOOC instruction using SimStudent 
and to produce evidence that the cost-benefit of creating intelligent tutors for these 
platforms is worth it. There is a great potential for intelligent tutors to have a broader 
impact (through MOOCs and other avenues), if we can demonstrate that authoring 
tools can lower the cost to tutor authoring while jointly improving tutor quality and 
student learning.  It is our hope that SimStudent, and other general tutor authoring 
platforms, can help achieve this goal.  

5 Recommendations for GIFT 

Based on our research with the SimStudent system, we have three recommendations 
for the Generalized Intelligent Framework for Tutoring. First, as with many authoring 
frameworks, authoring expert models in GIFT is a challenging problem. As such, it 
may benefit from a tool like SimStudent to aid in this authoring process. SimStudent’s 
automatically constructed expert models perform better than hand-authored models 



for multiple domains because they are not susceptible to expert blind spots. At the 
same time, in the process of generating these expert models, SimStudent makes errors 
that are often helpful in predicting human students’ mistakes. These errors could form 
the basis of a misconceptions library, before any data is gathered from real students. 
Exploring how SimStudent’s expert models and misconceptions could be utilized by 
GIFT may be a worthwhile direction for future work. This integration could take one 
of two forms: A SimStudent-like module could be constructed for GIFT that would 
allow authors to construct the domain knowledge by tutoring GIFT directly in the 
tutoring application or SimStudent could be configured to work with the tutoring 
application and then the production rule file generated by SimStudent could be con-
verted into one of the domain knowledge formats acceptable to GIFT. 

 
Second, we recommend that GIFT separate authoring of knowledge that is domain 

specific from the authoring of knowledge that is tutor specific. Domain general 
knowledge is already separated from domain specific knowledge in GIFT, but our 
research has found that domain specific knowledge is often reusable across tutoring 
applications. In the SimStudent system, we separated the construction of background 
domain knowledge (algebra features and operators), which tends to be reusable across 
tutors for the same domain (algebra), from the construction of an expert model for a 
specific tutor (how to solve particular algebra problems in the tutor interface). This 
was particularly useful because domain-specific background knowledge requires 
some Java programming abilities, whereas tutor-specific knowledge only requires the 
ability to demonstrate solutions in the tutor. This separation is useful because it allows 
domain experts, who may not know how to program, to construct the expert model for 
the tutor, if adequate domain knowledge already exists.  Furthermore, our work with 
SimStudent has shown that domain-specific background knowledge tends to transfer 
across different tutors in the same domain and sometimes even across domains. For 
example, the feature predicates for extracting numbers and words from problem de-
scriptions work in fraction addition tutors, algebra tutors, and chemistry tutors.  

 
Finally, the modularity of GIFT makes it ideal for measuring the usability and effi-

ciency of different combinations of authoring approaches and tools. We have used the 
GOMS model to evaluate the efficiency of different expert model authoring ap-
proaches (SimStudent and Example Tracing) in the context of CTAT. GIFT would 
benefit from similar analyses. Future GIFT research might explore how similar usa-
bility models can be employed for measuring the efficiency of different aspects of 
tutor authoring in a way that is comparable to other systems.  
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