
SimStudent: Authoring Expert Models by Tutoring

Christopher J. MacLellan, Eliane Stampfer Wiese,
Noboru Matsuda, Kenneth R. Koedinger

Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

cmaclell@cs.cmu.edu, stampfer@cs.cmu.edu,
noboru.matsuda@cs.cmu.edu, koedinger@cmu.edu

Abstract. One aim of the Generalized Intelligent Framework for Tutoring
(GIFT) is to reduce the time and cost of authoring Intelligent Tutoring Systems.
Recent work with SimStudent offers a promising approach to the efficient au-
thoring of expert models and misconception libraries. SimStudent works by in-
ducing general production rule models from author demonstrations and feed-
back. Importantly, the demonstration and feedback takes place directly in the
tutor interface and requires no programming. Empirical results have shown that
models induced by SimStudent fit student data better than models hand-
authored by domain experts. Additionally, an analysis with the Goals, Opera-
tors, Methods, and Selection rules (GOMS) model showed that authoring with
SimStudent is more efficient than authoring with current approaches, namely
Example-Tracing. This paper reviews those results and provides an example of
constructing a simple algebra tutor with SimStudent. This work with SimStu-
dent presents several concepts that may be useful in the design and develop-
ment of GIFT: modularization to allow for tutor authoring by non-
programmers, generation of likely student misconceptions as a byproduct of ex-
pert-model creation, and methods for comparing and evaluating authoring tools.

Keywords. Tutor Authoring Tools; Machine Learning; Expert Model; Produc-
tion Rules; Learning by Tutoring; Learning by Demonstrating

1 Introduction

Intelligent tutoring systems are effective at improving learning [1-4], but development
costs remain a formidable obstacle to their general adoption [5]. As an example, de-
spite widespread use of math Cognitive Tutors (more than 500k students per year
complete a Carnegie Learning tutor course), they have not been widely used more
broadly (e.g., in online education platforms such as Khan Academy, Coursera, etc.),
perhaps because their learning benefits are not thought to outweigh the costs of their
development. Authoring costs are particularly pronounced for massive online educa-
tion platforms, which have large quantities of content that vary widely across domains
(Khan academy has about 500 hours of videos spread over 40 units in Math, Science,

Economics, and Humanities). Similar to the goals that motivate GIFT, our work aims
to increase the value of intelligent tutoring systems by improving both sides of the
cost-benefit equation - building higher quality tutors that lead to more robust learning
while also decreasing authoring time.

SimStudent is an outgrowth of the Cognitive Tutor Authoring Tools (CTAT) [6, 7].

CTAT provides tools for constructing drag-and-drop tutor interfaces, authoring Ex-
ample-Tracing Tutors, and creating an expert model for Model-Tracing Tutors. The
Model-Tracing Tutor is more general, but more costly to produce. Authoring in this
paradigm consists of manually constructing production rules that define which actions
are appropriate given the current problem-solving state; e.g., if there is a constant on
both sides of the equation, then subtract one of those constants from both sides. These
production rules can generalize to a wide range of problems, as long as the ‘if' part of
the production rule is applicable. Authoring an Example-Tracing Tutor consists of
demonstrating every possible action for every state directly in the tutor interface (e.g.,
for the equation 4 + x = 2x - 5, the author would demonstrate subtracting 4 from both
sides). These demonstrations comprise a behavior graph, which specifies which ac-
tions are legal in each state. While authoring these tutors is generally much easier
(students can learn to build example-tracing tutors in an afternoon [7]), they are much
more specific than Model-Tracing Tutors. Demonstrations with Example-Tracing
tutors can be generalized to new problems that share the same underlying structure
(e.g., demonstrating 4 + x = 2x-5 could be generalized to 10 + x = 3x - 6 but not to 4
+ x = 5) using a technique called “mass production,” but problems with different
structures require additional demonstrations. These types of tutors are two ends of a
spectrum: Model-Tracing Tutors are difficult to produce, but they are quite general;
Example-tracing tutors are easy to produce, but are quite specific. Our goal is to com-
bine the best of both worlds in an authoring tool that makes general tutors easy to
build.

SimStudent, our authoring system [8], uses machine-learning techniques to try and

bridge the gap between Example-Tracing Tutors and Model-Tracing Tutors. It does
this by learning general production rule models from demonstrations and feedback. In
this paper, we summarize how this system works, give a step-by-step example of how
a tutor might be authored with SimStudent, and discuss the different lines of research
we are currently pursuing with SimStudent.

2 The SimStudent Architecture

SimStudent1 was created for three purposes: 1) to advance theories of human learn-
ing; 2) to explore the learning-by-teaching phenomenon; and 3) to improve the au-
thoring of intelligent tutors. We briefly review the SimStudent architecture, discuss
prior findings, and then describe how SimStudent can be used to author tutors.

1 For more details on SimStudent see http://www.simstudent.org/

3

Fig. 1. The knowledge (squares) and learning processes (circles) utilized by the SimStudent

system.

SimStudent learns from four sources of knowledge [8] (see Figure 1). Feature predi-
cates and primitive functions are built before SimStudent starts learning, and User
Feedback and User Demonstrations come from SimStudent's learning environment.
First, SimStudent needs to recognize relevant features of the tutor interface (e.g.,
numbers, operators, the equals sign). These ‘feature predicates’ are constructed by
writing small Java functions, the equivalent of writing regular expressions, to identify
key features in the interface. Second, SimStudent starts with a certain level of prior
knowledge (e.g., SimStudent for algebra can add two numbers at the beginning); these
‘primitive functions’ are also small Java functions, similar to basic Excel formulas,
for performing mental and interface actions. Third, within the learning environment,
SimStudent is provided with ‘user demonstrations.’ These consist of the author solv-
ing sample problem steps. Fourth, SimStudent learns from ‘user feedback,’ which is
yes/no correctness feedback when it attempts steps in a problem. After tutor problems
have been demonstrated, SimStudent will learn new rules, attempt to apply them to
new problems, and will ask the author for verification that the rules were applied cor-
rectly. Based on this author feedback, the condition statements of these rules are re-
fined.

Given these four sources of knowledge, SimStudent employs three learning mech-

anisms to produce general production rules. These three types of learning are called
‘how’ learning, ‘where’ learning, and ‘when’ learning. How learning identifies se-
quences of primitive function operators that would have plausibly produced the user
demonstrations (e.g., going from 4+4x = 5 to 4x = 1 could be caused by subtracting
the constant ‘4’ from both sides or by subtracting the coefficient of ‘x’ from both
sides). How learning generates the ‘then' part of the production rules. Where learning
identifies which interface elements are relevant to each demonstration, (e.g., learning

that all the interface elements in the last used row are relevant). Lastly, When learning
identifies the conditions under which a given sequence of operators is applicable. The
Where and When learning jointly produce the ‘if' part of a production rule. As the
author demonstrates problem steps the three mechanisms learn new production rules.
Once production rules are learned, SimStudent attempts to use those rules to solve
practice problems. The rules are refined when the author provides correctness feed-
back on each step of the problem.

SimStudent enables us to test if the How, Where, and When mechanisms are rea-

sonable approximations of how human students learn from demonstration and feed-
back. Indeed, empirical work indicates that models generated by SimStudent better fit
student tutor data than models hand authored by domain experts [9]. These results
were replicated across three different domains (algebra, stoichiometry, and fraction
addition). SimStudent may produce better results because it is less susceptible to “ex-
pert blind spots” [10] than domain experts. These blind spots refer to knowledge that
an expert doesn't realize they know. For example, a domain expert might view -x = 4
and -1x = 4 as equivalent, but the SimStudent model recognizes that additional
knowledge is needed in the first case because the -1 coefficient is implicit. Improved
student models are likely to result in better student learning [11] because they guide
interface design, problem selection, and assessment of student knowledge. Continu-
ing the example above, the original model for students’ extraction of a negative coef-
ficient lumped -x together with -3x, -5x, etc. That model assumes that practice on any
of those examples would lead to improved performance on other examples within the
group. In contrast, the SimStudent model would provide additional practice for -x and
would not assume automatic transfer from -3x to -x. These findings, that SimStudent
can create better models and that better models result in better student learning, show
promise for leveraging SimStudent to create more effective tutors.

In addition to theory building, SimStudent has been used as a teachable agent. In-

stead of asking students to learn directly from the tutor, students are tasked with
teaching SimStudent so that it can pass a quiz on the domain content. The learning-
by-teaching paradigms aim to take advantage of the “protégé effect,” so called be-
cause students have been found to be more motivated to learn on behalf of a teachable
agent than to learn for themselves [12]. Results [13] suggest that learning-by-teaching
is as effective as a Cognitive Tutor for students who have reached a basic level of
competency. This work seems to imply that we don’t need an expert model to teach
students since they can learn simply by teaching the SimStudent agent. However, the
students are still receiving feedback on how the SimStudent agent does on each quiz,
and grading the quizzes is done using an expert model. Therefore, it is still necessary
to author good expert models, even in a learning-by-teaching paradigm.

5

Fig. 2. SimStudent asking for correctness feedback.

A third line of SimStudent research investigates the authoring of expert models for

use in both tutoring systems and teachable agents. One study found that higher quality
models are produced by providing SimStudent with both demonstrations and feed-
back, compared with only giving it demonstrations [8]. A follow up study showed that
authoring an Algebra tutor with SimStudent is more efficient than authoring an equiv-
alent tutor using Example Tracing and that the model learned by SimStudent is more
general [14], when the background knowledge had already been authored. Overall,
research on the SimStudent system suggests that it might be a viable tool for efficient-
ly authoring tutoring content that is general and of high quality.

3 An Example of Authoring with SimStudent

Authoring with SimStudent is similar to authoring with CTAT. Details of authoring a
tutor with CTAT are written up elsewhere (http://ctat.pact.cs.cmu.edu/), so we focus
on the aspects of authoring that are unique to SimStudent: authoring background
knowledge and tutoring the SimStudent system interactively. This example shows
how to construct a simple algebra tutor using SimStudent.

3.1 Authoring Background Knowledge

The SimStudent system separates the authoring of background knowledge from the
construction of the expert model. Constructing the background knowledge requires
basic programming skills; since the expert model is created through interactive tutor-
ing, it requires no programming at all. The first class of background knowledge, fea-
ture predicates, are small Java functions that return True if a feature is present in an
interface element and False otherwise. One example might be the “HasCoefficient”
feature, which would be True for 3x but False for x + 1. SimStudent uses feature
predicates to recognize important features in the tutor interface. For the algebra do-
main we have authored 16 feature predicates. These predicates tend to be relatively
general, so they can be reused from one tutor to the next.

The second class of knowledge, primitive function operators, are similar to the fea-

ture predicates, in that they are small java functions, but they take two inputs (taken
either from interface elements or from the outputs of other primitive function opera-
tors) and return a single value. One example of a primitive function operator is
“AddTerm”: when given two numbers it returns their sum. These operators enable
SimStudent to explain demonstrations and to take actions in the tutor interface. For
the algebra domain we have authored 28 primitive function operators. Similar to fea-
ture predicates, primitive functions tend to be reusable across tutors.

3.2 Tutoring SimStudent Interactively

After constructing background knowledge, authoring is done in the tutor interface
using CTAT and running SimStudent's interactive learning module. SimStudent tries
to solve the problem loaded into the interface by firing an applicable production rule
and taking the step determined by the rule. After each step it asks for feedback on the
correctness of that action (see Figure 2). If the author provides positive feedback to
SimStudent, then it will continue solving the problem. If the feedback is negative,
SimStudent will try other applicable production rules. When it runs out of production
rules that apply to the current step, it will ask the user to do that step and then use its
learning mechanisms to learn a new production rule from that demonstration (see
Figure 3). After tutoring, SimStudent produces a behavior graph (shown on the left
side in Figures 2 and 3) and a production rule file. The behavior graph can power an
Example-Tracing tutor and the production rule file can run a Cognitive Tutor.

Fig. 3. SimStudent asking for a demonstration.

4 Future Work

The SimStudent architecture shows promise as a tool for simultaneously increasing
authoring efficiency and model quality [8, 14], but more research still needs to be
done. In terms of efficiency, few studies have directly compared the efficiency of
different authoring approaches. We are exploring different usability and interaction

7

models as a method for evaluating different approaches (e.g., the goals, operators,
methods, and selections rules models). In terms of model quality, we are working to
identify key performance metrics for general models. For example, in addition to
evaluating accuracy and recall of a model for correct behavior, we are also looking at
accuracy and recall of incorrect behavior. SimStudent can learn incorrect productions
from correct instruction by making incorrect induction due to suboptimal background
knowledge [15]. These plausible, but incorrect, inductions can be used to identify bug
rules that might be missed by experts. As an example, when SimStudent is taught to
divide both sides by 3 for the problem 3x = 6, it might incorrectly learn a rule for
dividing both sides by any number on the left side of the equation (an error students
commonly make). When SimStudent incorrectly solves a subsequent problem using
this bug rule, it will receive negative correctness feedback and refine its rule to only
apply to dividing by the coefficient. SimStudent could be modified to request a hint
message for this misconception during authoring, such as text pointing out that the
both sides of the equation are divided by the coefficient of x, not just any number.
After this modification, it would be worth evaluating how authoring with SimStudent
compares to Example-tracing or hand authoring in terms of number of bug rules iden-
tified.

In addition to evaluating efficiency and quality, we are also interested in exploring

how to increase SimStudent's generality. To accomplish this, we have been exploring
approaches for automatically learning the background feature predicates from tutoring
[16]. By reducing or eliminating the need to author this predicate knowledge, we will
make it easier to apply SimStudent to new domains. Additionally, we have been ex-
ploring how this feature predicate learning can be used to apply SimStudent to learn-
ing models for open-ended tasks, such as educational games [17].

Utilizing these new improvements, we are exploring the effectiveness of the Sim-

Student architecture for authoring content for a MOOC platform, such as Khan Acad-
emy. We are planning to recreate some of the MOOC instruction using SimStudent
and to produce evidence that the cost-benefit of creating intelligent tutors for these
platforms is worth it. There is a great potential for intelligent tutors to have a broader
impact (through MOOCs and other avenues), if we can demonstrate that authoring
tools can lower the cost to tutor authoring while jointly improving tutor quality and
student learning. It is our hope that SimStudent, and other general tutor authoring
platforms, can help achieve this goal.

5 Recommendations for GIFT

Based on our research with the SimStudent system, we have three recommendations
for the Generalized Intelligent Framework for Tutoring. First, as with many authoring
frameworks, authoring expert models in GIFT is a challenging problem. As such, it
may benefit from a tool like SimStudent to aid in this authoring process. SimStudent’s
automatically constructed expert models perform better than hand-authored models

for multiple domains because they are not susceptible to expert blind spots. At the
same time, in the process of generating these expert models, SimStudent makes errors
that are often helpful in predicting human students’ mistakes. These errors could form
the basis of a misconceptions library, before any data is gathered from real students.
Exploring how SimStudent’s expert models and misconceptions could be utilized by
GIFT may be a worthwhile direction for future work. This integration could take one
of two forms: A SimStudent-like module could be constructed for GIFT that would
allow authors to construct the domain knowledge by tutoring GIFT directly in the
tutoring application or SimStudent could be configured to work with the tutoring
application and then the production rule file generated by SimStudent could be con-
verted into one of the domain knowledge formats acceptable to GIFT.

Second, we recommend that GIFT separate authoring of knowledge that is domain

specific from the authoring of knowledge that is tutor specific. Domain general
knowledge is already separated from domain specific knowledge in GIFT, but our
research has found that domain specific knowledge is often reusable across tutoring
applications. In the SimStudent system, we separated the construction of background
domain knowledge (algebra features and operators), which tends to be reusable across
tutors for the same domain (algebra), from the construction of an expert model for a
specific tutor (how to solve particular algebra problems in the tutor interface). This
was particularly useful because domain-specific background knowledge requires
some Java programming abilities, whereas tutor-specific knowledge only requires the
ability to demonstrate solutions in the tutor. This separation is useful because it allows
domain experts, who may not know how to program, to construct the expert model for
the tutor, if adequate domain knowledge already exists. Furthermore, our work with
SimStudent has shown that domain-specific background knowledge tends to transfer
across different tutors in the same domain and sometimes even across domains. For
example, the feature predicates for extracting numbers and words from problem de-
scriptions work in fraction addition tutors, algebra tutors, and chemistry tutors.

Finally, the modularity of GIFT makes it ideal for measuring the usability and effi-

ciency of different combinations of authoring approaches and tools. We have used the
GOMS model to evaluate the efficiency of different expert model authoring ap-
proaches (SimStudent and Example Tracing) in the context of CTAT. GIFT would
benefit from similar analyses. Future GIFT research might explore how similar usa-
bility models can be employed for measuring the efficiency of different aspects of
tutor authoring in a way that is comparable to other systems.

6 Acknowledgements

This work was supported in part by a Graduate Training Grant awarded to Carnegie
Mellon University by the Department of Education (#R305B090023) and by the
Pittsburgh Science of Learning Center, which is funded by the NSF (#SBE-0836012).
This work was also supported in part by National Science Foundation Awards

9

(#DRL-0910176 and #DRL-1252440) and the Institute of Education Sciences, U.S.
Department of Education (#R305A090519). All opinions expressed in this article are
those of the authors and do not necessarily reflect the position of the sponsoring agen-
cy.

References

1. Koedinger, K.R., Anderson, J.R.: Intelligent Tutoring Goes To School in the Big City. In-
ternational Journal of Artificial Intelligence in Education. 8, 1–14 (1997).

2. Pane, J.F., Griffin, B.A., McCaffrey, D.F., Karam, R.: Effectiveness of Cognitive Tutor
Algebra I at Scale. RAND Corporation, Santa Monica, CA (2013).

3. Ritter, S., Anderson, J.R., Koedinger, K.R., Corbett, A.T.: Cognitive Tutor: Applied re-
search in mathematics education. Psychonomic Bulletin & Review. 14, 249–255 (2007).

4. Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D.,
Weinstein, A., Windersgill, M.: The Andes Physics Tutoring System: Five Years of Evalu-
ations. Presented at the Artificial Intelligence in Engineering (2005).

5. Sottilare, R.A., Holden, H.K.: Motivations for a Generalized Intelligent Framework for
Tutoring (GIFT) for Authoring, Instruction, and Analysis. Presented at the AIED 2013
Workshop on Recommendations for Authoring, Instructional Strategies and Analysis for
Intelligent Tutoring Systems (ITS): Towards the Development of a Generalized Intelligent
Framework for Tutoring (GIFT) June 21 (2013).

6. Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: The cognitive tutor authoring
tools (CTAT): Preliminary evaluation of efficiency gains. Presented at the International
Conference on Intelligent Tutoring Systems (2006).

7. Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: Example-Tracing Tutors: A New
Paradigm for Intelligent Tutoring Systems. International Journal of Artificial Intelligence
in Education. 19, 105–154 (2009).

8. Matsuda, N., Cohen, W.W., Koedinger, K.R.: Teaching the Teacher: Tutoring SimStudent
Leads to More Effective Cognitive Tutor Authoring. International Journal of Artificial In-
telligence in Education.

9. Li, N., Stampfer, E., Cohen, W.W., Koedinger, K.R.: General and Efficient Cognitive
Model Discovery Using a Simulated Student. Presented at the Proceedings of the 35th An-
nual Meeting of the Cognitive Science Society, Austin: TX (2013).

10. Nathan, M., Koedinger, K.R., Alibali, M.: Expert Blind Spot: When Content Knowledge
Eclipses Pedagogical Content Knowledge. Presented at the Third International Conference
on Cognitive Science (2001).

11. Koedinger, K.R., Stamper, J., McLaughlin, E., Nixon, T.: Using Data-Driven Discovery of
Better Student Models to Improve Student Learning. Presented at the Artificial Intelli-
gence in Engineering, Memphis, TN July (2013).

12. Chase, C., Chin, D.B., Oppezzo, M., Schwartz, D.L.: Teachable Agents and the Protégé
Effect. Journal of Science Education and Technology. 18, 334–352 (2009).

13. Matsuda, N., Keiser, V., Raizada, R., Tu, A., Stylianides, G., Cohen, W.W., Koedinger,
K.R.: Learning by Teaching SimStudent: Technical Accomplishments and an Initial Use
with Students. Presented at the International Conference on Intelligent Tutoring Systems
(2010).

14. MacLellan, C.J., Koedinger, K.R., Matsuda, N.: Authoring Tutors with SimStudent: An
Evaluation of Efficiency and Model Quality. Presented at the International Conference on
Intelligent Tutoring Systems June (2014).

15. Matsuda, N., Lee, A., Cohen, W.W., Koedinger, K.R.: A Computational Model of How
Learner Errors Arise from Weak Prior Knowledge. Presented at the Annual Conference of
the Cognitive Science Society, Austin, TX (2009).

16. Li, N., Schreiber, A.J., Cohen, W.W., Koedinger, K.R.: Efficient Complex Skill Acquisi-
tion Through Representation Learning. Advances In Cognitive Systems. 2, 149–166
(2012).

17. Harpstead, E., MacLellan, C., Koedinger, K.R., Aleven, V., Dow, S.P., Myers, B.: Investi-
gating the Solution Space of an Open-Ended Educational Game Using Conceptual Feature
Extraction. Presented at the International Conference on Educational Data Mining (2013).

