
SimStudent: Improving Tutor Quality and
Reducing Authoring Costs

Christopher J. MacLellan, Eliane Stampfer Wiese,
Noboru Matsuda, Kenneth R. Koedinger

Human-Computer Interaction Institute
Carnegie Mellon University, Pittsburgh, PA 15213, USA

cmaclell@cs.cmu.edu, stampfer@cs.cmu.edu,
noboru.matsuda@cs.cmu.edu, kodedinger@cmu.edu

Abstract. Intelligent Tutoring Systems are effective at improving learn-
ing, but are costly to produce. In this paper, we review SimStudent, a
system designed to aid authors in improving the quality of their tu-
tors while simultaneously reducing authoring costs. This system works
by inducing general production rule models from user demonstrations
and feedback. We discuss results demonstrating that SimStudent learned
models better fit student data than expert authored models and that it
is efficient to use. In addition, we provide an example of how a simple al-
gebra tutor would be constructed using this paradigm. Lastly, we review
future directions for this work.

1 Introduction

Intelligent tutoring systems are effective at improving learning [1–4], but de-
spite widespread massive use of math Cognitive Tutors (more than 500k stu-
dents per year complete a Carnegie Learning tutor course), they have not been
widely adopted more generally (e.g., in online education platforms such as Khan
Academy, Coursera, etc.). Perhaps intelligent tutors have not been adopted be-
cause their learning benefits are not thought to outweigh the costs of their devel-
opment. This problem is particularly pronounced for massive online education
platforms, which have a large quantities of content that vary widely across do-
mains (Khan academy has about 500 hours of videos spread over 40 units in
Math, Science, Economics, and Humanities). Our work aims to increase the
value of intelligent tutoring systems by improving both sides of the cost-benefit
equation - building higher quality tutors that lead to more robust learning while
also decreasing authoring time.

Previous estimates [5, 6] have suggested that it takes 200-300 hours to au-
thor an intelligent tutor for one hour of instruction. A further difficulty is that
tutor authoring also requires multiple kinds of expertise: experts in psychology,
computer science, and the content domains are usually needed when building
tutors. In an effort to lower the amount of time and expertise needed to produce
tutoring systems, many tutor authoring tools have been developed [5].



One such authoring tool is Cognitive Tutor Authoring Tools (CTAT) [7, 6].
This system provides tools for constructing drag-and-drop tutor interfaces, au-
thoring Cognitive Tutors, and authoring Example-Tracing Tutors. The Cognitive
Tutor is more general, but more costly to produce. Authoring in this paradigm
consists of manually constructing production rules that define which actions are
appropriate given the current problem-solving state; e.g., if there is a constant on
both sides of the equation, then subtract one of those constants from both sides.
These production rules can generalize to a wide range of problems, as long as
the ’if’ part of the production rule is met. Authoring an Example-Tracing Tutor
consists of demonstrating every possible action for every state directly in the tu-
tor interface (e.g., for the equation 4 + x = 2x - 5, the author would demonstrate
subtracting 4 from both sides). These demonstrations comprise a behavior graph,
which specifies which actions are legal in each state. While authoring these tu-
tors is generally much easier (students can learn to build example-tracing tutors
in an afternoon), they are much more specific than Cognitive Tutors. Demon-
strations with Example-Tracing tutors can be generalized to new problems that
share the same underlying structure (e.g., demonstrating 4 + x = 2x-5 could
be generalized to 10 + x = 3x - 6 but not to 4 + x = 5) using a technique
called mass production, but problems with different structure require additional
demonstrations. These tutors are at two extremes: Cognitive Tutors are difficult
to produce, but they are quite general; whereas, Example-tracing tutors are easy
to produce, but are quite specific. Our goal is to combine the best of both worlds
in an authoring tool that makes general tutors easy to build.

SimStudent, our authoring system, uses machine learning techniques to try
and bridge the gap between Cognitive Tutors and Example-Tracing Tutors. It
does this by learning general production rule models from demonstrations and
feedback. In this paper, we summarize how this system works, give a step-by-
step example of how a tutor might be authored with SimStudent, and discuss
the different lines of research we are currently pursuing with SimStudent.

2 The SimStudent Architecture

SimStudent1 was created for three purposes: 1) to advance theories of human
learning; 2) to explore the learning-by-teaching phenomenon; and 3) to improve
the authoring of intelligent tutors. We briefly review the SimStudent architec-
ture, discuss prior findings, and then describe how SimStudent can be used to
author tutors.

SimStudent learns from four sources of knowledge (see Figure 1). The first
two sources are built before SimStudent starts learning, and the other two sources
come from SimStudent’s learning environment. First, SimStudent needs to recog-
nize relevant features of the tutor interface (e.g., numbers, operators, the equals
sign). These ’feature predicates’ are constructed by writing small Java functions,
the equivalent of writing regular expressions, to identify key features in the in-
terface. Second, SimStudent starts with a certain level of prior knowledge (e.g.,

1 For more details on SimStudent see http://www.simstudent.org/



Fig. 1. The knowledge (squares) and learning processes (circles) utilized by the Sim-
Student system.

SimStudent for algebra can add two numbers at the beginning); these ’primitive
functions’ are also small Java functions, similar to basic Excel formulas, for per-
forming mental and interface actions. Third, within the learning environment,
SimStudent is provided with author demonstrations. These consist of the author
solving sample problem steps. Fourth, SimStudent learns from yes/no correct-
ness feedback when it attempts steps in a problem. After tutor problems have
been demonstrated, SimStudent will learn new rules, attempt to apply them to
new problems, and will ask the author for verification that the rules were applied
correctly.

Given these four sources of knowledge, SimStudent employs three learning
mechanisms to produce general production rules. These three types of learning
are called ’how’ learning, ’where’ learning, and ’when’ learning. How learning
identifies sequences of primitive function operators that would have plausibly
produced the user demonstrations (e.g., going from 4+4x = 5 to 4x = 1 could
be caused by subtracting the constant ’4’ from both sides or by subtracting
the coefficient of ’x’ from both sides). How learning generates the ’then’ part
of the production rules. Where learning identifies which interface elements are
relevant to each demonstration, (e.g., learning that all the interface elements in
the last used row are relevant). Lastly, When learning identifies the conditions
under which a given sequence of operators is applicable. The Where and When
learning jointly produce the ’if’ part of a production rule. As the author demon-
strates problem steps the three mechanisms learn new production rules. Once
production rules are learned, SimStudent attempts to use those rules to solve
practice problems. The rules are refined when the author provides correctness
feedback on each step of the problem.

SimStudent enables us to test if the How, Where, and When mechanisms are
reasonable approximations of how human students learn from demonstration and



feedback. Indeed, empirical work indicates that models generated by SimStudent
better fit student tutor data than models hand authored by domain experts [8].
These results were replicated across three different domains (algebra, stoichiom-
etry, and fraction addition). SimStudent may produce better results because it
is less susceptible to “expert blind spots” [9] than domain experts. These blind
spots refer to knowledge that an expert doesn’t realize they know. For example,
a domain expert might view −x = 4 and −1x = 4 as equivalent, but the Sim-
Student model recognizes that additional knowledge is needed in the first case
since the −1 coefficient is implicit. Improved student models are likely to result
in better student learning [10] because they guide interface design, problem se-
lection, and assessment of student knowledge. Continuing the example above,
the original model for students’ extraction of a negative coefficient lumped −x
together with −3x, −5x, etc. That model assumes that practice on any of those
examples would lead to improved performance on other examples within the
group. In contrast, the SimStudent model would provide additional practice for
−x and would not assume automatic transfer from −3x to −x. These findings,
that SimStudent can create better models and that better models result in bet-
ter student learning, show promise for leveraging SimStudent to create more
effective tutors.

In addition to theory building, SimStudent has been used as a teachable
agent. Instead of asking students to learn directly from the tutor, students are
tasked with teaching SimStudent so that it can pass a quiz on the domain con-
tent. The learning-by-teaching paradigms aim to take advantage of the “protoge
effect,” so called because students have been found to be more motivated to
learn on behalf of a teachable agent than to learn for themselves [11]. Results
[12] suggest that learning-by-teaching is as effective as a Cognitive Tutor for
students who have reached a basic level of competency. This work seems to im-
ply that we don’t need an expert model to teach students since they can learn
simply by teaching the SimStudent agent. However, the students are still receiv-
ing feedback on how the SimStudent agent does on each quiz, and grading the
quizzes is done using an expert model. Therefore, it is still necessary to author
good expert models, even in a learning-by-teaching paradigm.

A third line of SimStudent research investigates the authoring of expert mod-
els for use in both tutoring systems and teachable agents. One study found that
higher quality models are produced by providing SimStudent with both demon-
strations and feedback, compared with only giving it demonstrations [13]. A fol-
low up study showed that authoring an Algebra tutor with SimStudent is more
efficient than authoring an equivalent tutor using Example Tracing and that the
model learned by SimStudent is more general [14], when the background knowl-
edge had already been authored. Overall, research on the SimStudent system
suggests that it might be a viable tool for efficiently authoring tutoring content
that is general and of high quality.



3 An Example of Authoring with SimStudent

Authoring with SimStudent is similar to authoring with CTAT. Details of au-
thoring a tutor with CTAT are written up elsewhere (http://ctat.pact.cs.cmu.edu/),
so we focus on the aspects of authoring that are unique to SimStudent: authoring
background knowledge and tutoring the SimStudent system interactively. This
example shows how to construct a simple algebra tutor using SimStudent.

The first step in authoring a SimStudent tutor is to construct the feature
predicates that SimStudent will use to interpret the world. These feature pred-
icates are small Java functions that returns True if a feature is present in an
interface element and False otherwise. One example might be the “HasCoeffi-
cient” feature, which would be True for 3x but False for x+ 1. SimStudent uses
feature predicates to recognize important features in the tutor interface. For the
algebra domain we have authored 16 feature predicates. These predicates tend
to be relatively general, so they can be reused from one tutor to the next.

The next step in authoring is to construct primitive function operators. These
operators are similar to the feature predicates, in that they are small java func-
tions, but they take two inputs (taken either from interface elements or from the
outputs of other primitive function operators) and return a single value. One ex-
ample of a primitive function operator is “AddTerm”: when given two numbers
it returns their sum. These operators enable SimStudent to explain demonstra-
tions and to take actions in the tutor interface. For the algebra domain we have
authored 28 primitive function operators. Similar to feature predicates, these
functions tend to be reusable across tutors.

After constructing background knowledge, authoring is done in the tutor
interface using CTAT and running SimStudent’s interactive learning module.
SimStudent tries to solve the problem loaded into the interface by firing an
applicable production rule and taking the step determined by the rule. After
each step it asks for feedback on the correctness of that action (see Figure 2). If
the author provides positive feedback to SimStudent, then it will continue solving
the problem. If the feedback is negative, SimStudent will try other applicable
production rules. When it runs out of production rules that apply to the current

Fig. 2. SimStudent asking for correctness feedback.



Fig. 3. SimStudent asking for a demonstration.

step, it will ask the user to do that step and then use its learning mechanisms
to learn a new production rule from that demonstration (see Figure 3).

After tutoring, SimStudent produces a behavior graph (shown on the left side
in Figures 2 and 3) and a production rule file. The behavior graph can power an
Example-Tracing tutor and the production rule file can run a Cognitive Tutor.

4 Future Work

The SimStudent architecture shows promise as a tool for simultaneously increas-
ing authoring efficiency and model quality [14, 13], but more research still needs
to be done. In terms of efficiency, few studies have directly compared the ef-
ficiency of different authoring approaches. We are exploring different usability
and interaction models as a method for evaluating different approaches (e.g.,
the goals, operators, methods, and selections rules models). In terms of model
quality, we are working to identify key performance metrics for general models.
For example, in addition to evaluating accuracy and recall of a model for cor-
rect behavior, we are also looking at accuracy and recall of incorrect behavior.
SimStudent can learn incorrect productions from correct instruction by making
incorrect induction due to suboptimal background knowledge [15]. These plau-
sible, but incorrect, inductions can be used to identify bug rules that might be
missed by experts. If seems likely that the SimStudent models will have higher
quality when evaluated in terms of both correct and incorrect behavior then
when evaluated in terms of correct behavior alone (based on previous findings
related to the expert blind spot).

In addition to evaluating efficiency and quality, we are also interested in
exploring how to increase SimStudent’s generality. To accomplish this, we have
been exploring approaches for automatically learning the background feature
predicates from tutoring [16]. By reducing or eliminating the need to author this
predicate knowledge, we will make it easier to apply SimStudent to new domains.
Additionally, we have been exploring how this feature predicate learning can be
used to apply SimStudent to learning models for open-ended tasks, such as
educational games [17].



Utilizing these new improvements, we are exploring the effectiveness of the
SimStudent architecture for authoring content for a MOOC platform, such as
Khan Academy. We are planning to recreate some of the MOOC instruction using
SimStudent and to produce evidence that the cost-benefit of creating intelligent
tutors for these platforms is worth it. There is a great potential for intelligent
tutors to have a broader impact (through MOOCs and other avenues), if we
can demonstrate that authoring tools can lower the cost to tutor authoring
while jointly improving tutor quality and student learning. It is our hope that
SimStudent, and other general tutor authoring platforms, can help achieve this
goal.

Acknowledgments

This work was supported in part by a Graduate Training Grant awarded to
Carnegie Mellon University by the Department of Education (#R305B090023)
and by the Pittsburgh Science of Learning Center, which is funded by the NSF
(#SBE-0836012). This work was also supported in part by National Science
Foundation Awards (#DRL-0910176 and #DRL-1252440) and the Institute of
Education Sciences, U.S. Department of Education (#R305A090519). All opin-
ions expressed in this article are those of the authors and do not necessarily
reflect the position of the sponsoring agency.

References

1. Koedinger, K.R., Anderson, J.R.: Intelligent Tutoring Goes To School in the Big
City. International Journal of Artificial Intelligence in Education 8 (1997) 1–14

2. Pane, J.F., Griffin, B.A., McCaffrey, D.F., Karam, R.: Effectiveness of Cognitive
Tutor Algebra I at Scale. Technical report, RAND Corporation, Santa Monica,
CA (March 2013)

3. Ritter, S., Anderson, J.R., Koedinger, K.R., Corbett, A.T.: Cognitive Tutor: Ap-
plied research in mathematics education. Psychonomic Bulletin & Review 14(2)
(2007) 249–255

4. Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy,
D., Weinstein, A., Windersgill, M.: The Andes Physics Tutoring System: Five
Years of Evaluations. In McCalla, G., Looi, C.K., Bredeweg, B., Breuker, J., eds.:
Artificial Intelligence in Engineering. (2005) 678–685

5. Murray, T.: An Overview of Intelligent Tutoring System Authoring Tools: Updated
analysis of the state of the art. In Murray, Ainsworth, Blessing, eds.: Authoring
tools for advanced technology learning environments. Kluwer Academic Publishers,
Netherlands (2003) 493–546

6. Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: A New Paradigm for
Intelligent Tutoring Systems: Example-Tracing Tutors. International Journal of
Artificial Intelligence in Education 19 (2009) 105–154

7. Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: The cognitive tutor au-
thoring tools (CTAT): Preliminary evaluation of efficiency gains. In Ikeda, M.,
Ashley, K.D., Tak-Wai, C., eds.: International Conference on Intelligent Tutoring
Systems, Springer (2006) 61–70



8. Li, N., Stampfer, E., Cohen, W.W., Koedinger, K.R.: General and Efficient Cog-
nitive Model Discovery Using a Simulated Student. In Knauff, M., Paulen, M.,
Sebanz, N., Wachsmuth, I., eds.: Proceedings of the 35th Annual Meeting of the
Cognitive Science Society, Austin: TX (2013)

9. Nathan, M., Koedinger, K.R., Alibali, M.: Expert Blind Spot: When Content
Knowledge Eclipses Pedagogical Content Knowledge. In: Third International Con-
ference on Cognitive Science. (2001) 644–648

10. Koedinger, K.R., Stamper, J., McLaughlin, E., Nixon, T.: Using Data-Driven Dis-
covery of Better Student Models to Improve Student Learning. In Lane, H.C.,
Yacef, K., Mostow, J., Pavlik, P., eds.: Artificial Intelligence in Engineering, Mem-
phis, TN (July 2013) 421–430

11. Chase, C., Chin, D.B., Oppezzo, M., Schwartz, D.L.: Teachable Agents and the
Protégé Effect. Journal of Science Education and Technology 18 (2009) 334–352

12. Matsuda, N., Keiser, V., Raizada, R., Tu, A., Stylianides, G., Cohen, W.W.,
Koedinger, K.R.: Learning by Teaching SimStudent: Technical Accomplishments
and an Initial Use with Students. In Aleven, V., Kay, J., Mostow, J., eds.: Inter-
national Conference on Intelligent Tutoring Systems. (2010) 317–326

13. Matsuda, N., Cohen, W.W., Koedinger, K.R.: Teaching the Teacher: Tutoring
SimStudent Leads to More Effective Cognitive Tutor Authoring. International
Journal of Artificial Intelligence in Education

14. MacLellan, C.J., Koedinger, K.R., Matsuda, N.: Authoring Tutors with SimStu-
dent: An Evaluation of Efficiency and Model Quality. In Trausen-Matu, S., Boyer,
K., eds.: International Conference on Intelligent Tutoring Systems. (June 2014)

15. Matsuda, N., Lee, A., Cohen, W.W., Koedinger, K.R.: A Computational Model of
How Learner Errors Arise from Weak Prior Knowledge. In Taatgen, N., van Rijn,
H., eds.: Annual Conference of the Cognitive Science Society, Austin, TX (2009)
1288–1293

16. Li, N., Schreiber, A.J., Cohen, W.W., Koedinger, K.R.: Efficient Complex Skill
Acquisition Through Representation Learning. Advances in Cognitive Systems 2
(2012) 149–166

17. Harpstead, E., MacLellan, C., Koedinger, K.R., Aleven, V., Dow, S.P., Myers,
B.: Investigating the Solution Space of an Open-Ended Educational Game Using
Conceptual Feature Extraction. In: International Conference on Educational Data
Mining. (2013)


