
Authoring Tutors with Complex Solutions:
A Comparative Analysis of Example Tracing and

SimStudent

Christopher J. MacLellan1, Erik Harpstead1, Eliane Stampfer Wiese1,
Mengfan Zou2, Noboru Matsuda1, Vincent Aleven1, and

Kenneth R. Koedinger1

1 Carnegie Mellon University, Pittsburgh PA, USA,
{cmaclell, eharpste, stampfer,

noboru.matsuda, aleven, koedinger}@cs.cmu.edu,
2 Tsinghua University, Beijing, China,

zmf11@mails.tsinghua.edu.cn

Abstract. Problems with many solutions and solution paths are on the
frontier of what non-programmers can author with existing tutor au-
thoring tools. Popular approaches such as Example Tracing, which al-
low authors to build tutors by demonstrating steps directly in the tutor
interface. This approach encounters difficulties for problems with more
complex solution spaces because the author needs to demonstrate a large
number of actions. By using SimStudent, a simulated learner, it is pos-
sible to induce general rules from author demonstrations and feedback,
enabling efficient support for complexity. In this paper, we present a
framework for understanding solution space complexity and analyze the
abilities of Example Tracing and SimStudent for authoring problems in
an experimental design tutor. We found that both non-programming ap-
proaches support authoring of this complex problem. The SimStudent
approach is 90% more efficient than Example Tracing, but requires spe-
cial attention to ensure model completeness. Example Tracing, on the
other hand, requires more demonstrations, but reliably arrives at a com-
plete model. In general, Example Tracing’s simplicity makes it good for a
wide range problems, a reason for why it is currently the most widely used
authoring approach. However, SimStudent’s improved efficiency makes it
a promising non-programmer approach, especially when solution spaces
become more complex. Finally, this work demonstrates how simulated
learners can be used to efficiently author models for tutoring systems.

Keywords: Tutor Authoring, Intelligent Tutoring Systems, Cognitive
Modeling, Programming-by-Demonstration

1 Introduction

Intelligent Tutoring Systems (ITSs) are effective at improving student learning
across many domains– from mathematics to experimental design [10, 13, 5]. ITSs

AIED 2015 Workshop Proceedings - Vol 5 35



also employ a variety of pedagogical approaches for learning by doing, includ-
ing intelligent novice [7], invention [12], and learning by teaching [9]. Many of
these approaches require systems that can model complex solution spaces that
accommodate multiple correct solutions to a problem and/or multiple possible
paths to each solution. Further, modeling complex spaces can be desirable ped-
agogically: student errors during problem solving can provide valuable learning
opportunities, and therefore may be desirable behaviors. Mathan and Koedingers
spreadsheet tutor provides experimental support for this view– a tutor that al-
lowed exploration of incorrect solutions led to better learning compared to one
that enforced a narrower, more efficient solution path [7]. However, building tu-
toring systems for complex solution spaces has generally required programming.
What options are available to the non-programmer? Authoring tools have radi-
cally reduced the difficulties and costs of tutor building [2, 6], and have allowed
authoring without programming. Through the demonstration of examples di-
rectly in the tutor interface, an author can designate multiple correct solutions,
and many correct paths to each solution. Yet, the capabilities of these tools for
authoring problems with complex solution spaces has never been systematically
analyzed.

In this paper, we define the concept of solution space complexity and, through
a case study, explore how two authoring approaches deal with this complexity.
Both approaches (Example Tracing and SimStudent) are part of the Cognitive
Tutor Authoring Tools (CTAT) [1]. Our case study uses the domain of introduc-
tory experimental design, as problems in this area follow simple constraints (only
vary one thing at a time), but solutions can be arbitrarily complex depending on
how many variables are in the experiment and how many values each can take.

2 Solution Space Complexity

Solution spaces have varying degrees of complexity. Our framework for examining
complexity considers both how many correct solutions satisfy a problem and how
many paths lead to each solution. Within this formulation, we discuss how easily
a non-programmer can author tutors that support many solutions and/or many
paths to a solution.

How might this formulation of complexity apply to an experimental design tu-
tor? Introductory problems in this domain teach the control of variables strategy
(only manipulating a single variable between experimental conditions to allow
for causal attribution) [3]. Due to the combinatorial nature of experiments (i.e.,
multiple conditions, variables, and variable values), the degree of complexity in
a particular problem depends on how it is presented. To illustrate, imagine that
students are asked to design an experiment to determine how increasing the heat
of a burner affects the melting rate of ice in a pot (see Figure 1). The following
tutor prompts (alternatives to the prompt in Figure 1) highlight how different
problem framings will affect the solution complexity:

One solution with one path Design an experiment to determine how increas-
ing the heat of a Bunsen burner affects the rate at which ice in a pot will

AIED 2015 Workshop Proceedings - Vol 5 36



Fig. 1. Experimental design tutor interface

melt by assigning the first legal value to the variables in left to right, top
down order as they appear in the table.

One solution and many paths Design an experiment to determine how in-
creasing the heat of a Bunsen burner affects the rate at which ice in a pot
will melt by assigning the first legal value to variables.

Many solutions each with one path Design an experiment to determine how
increasing the heat of a Bunsen burner affects the rate at which ice in a pot
will melt by assigning values to variables in left to right, top down order as
they appear in the table.

Many solutions with many paths Design an experiment to determine how
increasing the heat of a Bunsen burner affects the rate at which ice in a pot
will melt.

While these examples show that solution space complexity can be qualita-
tively changed (i.e., one solution vs. many solutions) by reframing a problem,
quantitative changes are also possible. For example, adding a fourth variable to
the interface in Figure 1 would require two more steps per solution path (setting
the variable for each condition), while adding another value to each variable in-
creases the number of possible options at each step of the solution path. As this
example illustrates, solution space complexity is not an inherent property of a
domain, but rather arises from an authors design choices.

3 Tutor Authoring

Our analysis focuses on the Cognitive Tutor Authoring Tools (CTAT), as CTAT
is the most widely used tutor authoring tool and the approaches it supports are
representative of authoring tools in general [2]. CTAT supports non-programmers
in building both tutor interfaces and cognitive models (for providing feedback).
Cognitive models can be constructed with Example Tracing or SimStudent. In
this section, we step through how Example-Tracing and SimStudent approaches
would be applied by non-programmers to the experimental design task, using the

AIED 2015 Workshop Proceedings - Vol 5 37



interface shown in Figure 1. Further, we discuss the features of each approach
for handling solution space complexity in the context of this example.

3.1 Example Tracing

When building an Example-Tracing tutor in CTAT, the author demonstrates
correct solutions directly in the tutoring interface. These demonstrated steps
are recorded in a behavior graph. Each node in the behavior graph represents a
state of the tutoring interface, and each link represents an action that moves the
student from one node to another. In Example Tracing each link is produced as a
result of a single action demonstrated directly in the tutor interface; many legal
actions might be demonstrated for each state, creating branches in the behavior
graph.

Figure 2 shows an example of our experimental design tutor interface and
an associated behavior graph. The particular prompt chosen has 8 solutions and
many paths to each solution. These alternative paths correspond to different
orders in which the variables in the experimental design can be assigned. The
Example-Tracing approach allows authors to specify that groups of actions can
be executed in any order. In the context of our example, this functionality allows
the author to demonstrate one path to each of the 8 unique solutions (these
8 paths are visible in Figure 2) and then specify that the actions along that
path can be executed in any order. Unordered action groups are denoted in the
behavior graph by colored ellipsoids.

Fig. 2. An experimental design tutor (right) and its associated behavior graph (left).
This tutor supports students in designing an experiment to test the effect of heat on
a dependet variable. The correct answer is to pick two different values for the “Heat”
variable and to hold the values constant for other variables.

Once a behavior graph has been constructed for a specific problem (e.g. de-
termine the effect of heat on ice melting), that behavior graph can be generalized
to other problems (e.g. determine the effect of sunlight on plant growth) using
mass production. The mass production feature allows the author to replace spe-
cific values in the interface with variables and then to instantiate an arbitrary

AIED 2015 Workshop Proceedings - Vol 5 38



number of behavior graphs with different values for the variables. This approach
is powerful for supporting many different problems that have identical behavior
graph structure, such as replacing all instances of “heat” with another variable,
“sunlight”. However, if a problem varies in the structure of its behavior graph,
such as asking the student to manipulate a variable in the second column instead
of the first (e.g., “lid” instead of “heat”), then a new behavior graph would need
to be built to reflect the change in the column of interest.

How efficient is Example Tracing in building a complete cognitive model for
the experimental design problem? The complete model consists of 3 behavior
graphs (one for each of the three variable columns that could be manipulated).
Each graph took 56 demonstrations and required 8 unordered action groups to be
specified. Thus, the complete cognitive model required 168 demonstrations and
24 unordered group specifications. Using estimates from a previously developed
Keystroke-Level Model [6], which approximates the time needed for an error-free
expert to perform each interface action, we estimate that this model would take
about 27 minutes to build using Example Tracing. Notably, the ability to specify
unordered action groups offers substantial efficiency gains - without it, authoring
would take almost 100 hours. Furthermore, with mass production, this model
can generalize to any set of authored variables.

3.2 SimStudent

While the Example-Tracing behavior graph creates links from user demonstra-
tions, the SimStudent system extends these capabilities by inducing production
rule models from demonstrations and feedback (for details on this rule induction
see [8]). In the experimental design tutor, SimStudent might learn a rule that
sets one of the variables to an arbitrary value when no values for that variable
have been assigned. Then, it might learn different rules for setting a variables
second value based on whether or not it is being manipulated.

Authoring with SimStudent is similar to Example Tracing in that SimStu-
dent asks for demonstrations when it does not know how to proceed. However,
when SimStudent already has an applicable rule, it fires the rule and shows the
resulting action in the tutor interface. It then asks the author for feedback on
that action. If the feedback is positive, SimStudent may refine the conditions
of its production rules before continuing to solve the problem. If the feedback
is negative, SimStudent will try firing a different rule. When SimStudent ex-
hausts all of its applicable rules, it asks the author to demonstrate a correct
action. Figure 3 shows how SimStudent asks for demonstrations and feedback.
When authoring with SimStudent, the author does not have to specify rule or-
der - as long as a rule’s conditions are satisfied, it is applicable. Authoring with
SimStudent produces both a behavior graph (of the demonstrations and actions
SimStudent took in the interface) and a production rule model.

To evaluate the efficiency of the SimStudent approach we constructed a com-
plete model for the experimental design tutor. It can be difficult to determine
when a SimStudent model is correct and complete from the authoring interac-
tions alone. In most cases the SimStudent model is evaluated with set of held-out

AIED 2015 Workshop Proceedings - Vol 5 39



Fig. 3. SimStudent asking for feedback (left) and for a demonstration (right).

test problems (i.e., unit tests). However, in this case the learned rules were sim-
ple enough to evaluate by direct inspection. We noticed that SimStudent learned
one correct strategy, but had not explored other solutions. This is typical of Sim-
Student - once it learns a particular strategy it applies it repeatedly. Therefore,
authors must give it additional demonstrations of alternative paths. With the
experimental design tutor, we noticed that SimStudent was always choosing the
first value for non-manipulated variables, so we gave it additional demonstra-
tions where non-manipulated variables took values besides those demonstrated
on the initial run.

Ultimately, SimStudent acquired a complete model after 7 demonstrations
and 23 feedback responses. Using the same Keystroke-Level Model from [6], we
estimate that building a cognitive model using SimStudent would take an error-
free expert about 2.12 minutes – much shorter than Example Tracing. Like
Example Tracing, the model produced by SimStudent can work with arbitrary
variables. Unlike Example Tracing, the learned model can work for unauthored
variables; for example, students could define their own variables while using the
tutor. This level of generality could be useful in inquiry-based learning envi-
ronments [4]. Finally, if another variable column was added to the tutor, the
SimStudent model would be able to function without modification. For Exam-
ple Tracing, such a change would constitute a change to the behavior graph
structure, so a completely new behavior graphs would need to be authored to
support this addition.

4 Discussion

Both Example Tracing and SimStudent can create tutors for problems with
complex solution spaces. However, our analysis shows that the two approaches

AIED 2015 Workshop Proceedings - Vol 5 40



differ in terms of their efficiency and, as a result, how many solutions and paths
they can handle in practice.

First, the Example-Tracing approach worked very well, even though the ex-
perimental design problems have a combinatorial structure. In particular, un-
ordered action groups and mass production drastically reduced the number of
demonstrations needed to cover the solution space, 168 vs. 40,362. The simplic-
ity of Example Tracing combined with the power afforded by these features is
likely why Example Tracing is the most widely used authoring approach today
[2].

The SimStudent approach was more efficient than Example Tracing (approx.
2.12 vs. 27 minutes), but this comparison requires several caveats. The machine
learning mechanisms of SimStudent generalize demonstrations and feedback into
rules, which allows SimStudent to only model unique actions and the conditions
under which they apply. However, this means SimStudent may not acquire a
complete model. In the experimental design case study, SimStudent at first only
learned that non-manipulated variables take their first value (rather than any
value that is constant across conditions). In general, this problem arises when
SimStudent acquires a model that can provide at least one correct solution for
any problem. In these situations, it never prompts an author to provide alter-
native demonstrations; leading an unsuspecting author to create an incomplete
model. A related complication is determining when the SimStudent model is
complete. While determining the completeness of models in both Example Trac-
ing and SimStudent can be difficult, authors must attempt to infer completeness
from SimStudent’s problem solving performance– a method that can be rather
opaque at times. Thus, an open area for simulated learning systems is how best
to evaluate the quality of learned models.

Fig. 4. How the space of solution space complexity is handled by existing non-
programmer authoring approaches.

AIED 2015 Workshop Proceedings - Vol 5 41



Overall our findings, when paired with those of previous work [6], suggest
an interpretation depicted in Figure 4. In this figure the potential space of com-
plexity is depicted in terms of number of unique solutions and number of paths
per solution. The inner region denotes the area of the complexity space where
we believe Example Tracing will maximize non-programmers’ authoring utility.
This region is skewed towards a higher number of paths, owing to Example
Tracing’s capacity to specify unordered actions. This portion of the complexity
space contains many of the tutors that have already been built using Example
Tracing [2]. As the complexity of a problem’s solution space increases, Example
Tracing becomes less practical (though still capable) and SimStudent becomes
a more promising option, despite the caveats for using it. SimStudent’s power
of rule generalization gives it the ability to deal with more paths and unique
solutions with less author effort, however, these capabilities come with the risk
of producing incomplete models (without the author being aware).

Notably missing in the figure is any coverage of the upper right quadrant.
This area would be a fruitful place to direct future work that supports non-
programmers in authoring problems with many solutions with many paths. In
particular, simulated learning systems might be extended to give non-programmers
access to this portion of the space. One existing approach for dealing with highly
complex solution spaces is to only model the aspects of the space that students
are most likely to traverse. For example, work by Rivers and Koedinger [11] has
explored the use of prior student solutions to seed a feedback model for intro-
ductory programming tasks. As it stands this area can only be reached using
custom built approaches and would benefit from authoring tool research.

One limitation of our current approach is the assumption that there is a body
of non-programmers that wants to build tutors for more complex problems. Our
analysis here suggests that there is an open space for non-programming tools
that support highly complex solution spaces, but it is less clear that authors
have a desire to create tutors in this portion of the space. A survey of authors
interested in building complex tutors without programming would help to shed
light on what issues non-programmers are currently having in building their
tutors. It is important that such a survey also include the perspective of those
outside the normal ITS community to see if there are features preventing those
who are interested from entering the space.

From a pedagogical point of view, it is unclear how much of the solution
space needs to be modeled in a tutor. Waalkens et al. [16] have explored this
topic by implementing three versions of an Algebra equation solving tutor, each
with progressively more freedom in the number of paths that students can take
to a correct solution. They found that the amount of freedom did not have
an effect on students learning outcomes. However, there is evidence that the
ability to use and decide between different strategies (i.e. solution paths) is
linked with improved learning [14]. Further, subsequent work [15] has suggested
that students only exhibit strategic variety if they are given problems that favor
different strategies. Regardless of whether modeling the entire solution space is

AIED 2015 Workshop Proceedings - Vol 5 42



pedagogically necessary, it is important that available tools support the ability to
model complex spaces so that these research questions can be further explored.

5 Conclusion

The results of our analysis suggest that both the Example Tracing and Sim-
Student authoring approaches are promising methods for non-programmers to
create tutors even for problems with many solutions with many paths. More
specifically, we found that SimStudent was more efficient for authoring a tutor
for experimental design, but authoring with SimStudent had a number of caveats
related to ensuring that the authored model was complete. In contrast, Example
Tracing was simple to use and it was clear that the authored models were com-
plete. Overall, our analysis shows that Example Tracing is good for a wide range
of problems that non-programmers might want to build tutors for (supported
by its extensive use in the community [2]). However, the SimStudent approach
shows great promise as an efficient authoring approach, especially when the so-
lution space becomes complex. In any case, more research is needed to expand
the frontier of non-programmers’ abilities to author tutors with complex solution
spaces.

Finally, this work demonstrates the feasibility and power of utilizing a simu-
lated learning system (i.e., SimStudent) to facilitate the tutor authoring process.
In particular authoring tutors with SimStudent took only 10% of the time that it
took to author a tutor with Example-Tracing, a non-simulated learner approach.
Educational technologies with increasingly complex solution spaces are growing
in popularity (e.g. educational games and open-ended learning environments),
but current approaches do not support non-programmers in authoring tutors
for these technologies. Our results show that simulated learning systems are a
promising tool for supporting these non-programmers. However, more work is
needed to improve our understanding of how simulated learners can contribute
to the authoring process and how the models learned by these systems can be
evaluated.

6 Acknowledgements

We would like to thank Caitlin Tenison for her thoughtful comments and feed-
back on earlier drafts. This work was supported in part by a Graduate Train-
ing Grant awarded to Carnegie Mellon University by the Department of Ed-
ucation (#R305B090023) and by the Pittsburgh Science of Learning Center,
which is funded by the NSF (#SBE-0836012). This work was also supported
in part by National Science Foundation Awards (#DRL-0910176 and #DRL-
1252440) and the Institute of Education Sciences, U.S. Department of Education
(#R305A090519). All opinions expressed in this article are those of the authors
and do not necessarily reflect the position of the sponsoring agency.

AIED 2015 Workshop Proceedings - Vol 5 43



References

1. Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: The cognitive tutor au-
thoring tools (CTAT): Preliminary evaluation of efficiency gains. In: Ikeda, M.,
Ashley, K.D., Tak-Wai, C. (eds.) ITS ’06. pp. 61–70. Springer (2006)

2. Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: A New Paradigm for Intel-
ligent Tutoring Systems: Example-Tracing Tutors. IJAIED 19(2), 105–154 (2009)

3. Chen, Z., Klahr, D.: All Other Things Being Equal: Acquisition and Transfer of
the Control of Variables Strategy. Child Development 70(5), 1098–1120 (1999)

4. Gobert, J.D., Koedinger, K.R.: Using Model-Tracing to Conduct Performance As-
sessment of Students’ Inquiry Skills within a Microworld. Society for Research on
Educational Effectiveness (2011)

5. Klahr, D., Triona, L.M., Williams, C.: Hands on what? The relative effectiveness of
physical versus virtual materials in an engineering design project by middle school
children. Journal of Research in Science Teaching 44(1), 183–203 (Jan 2007)

6. MacLellan, C.J., Koedinger, K.R., Matsuda, N.: Authoring Tutors with SimStu-
dent: An Evaluation of Efficiency and Model Quality. In: Trausen-Matu, S., Boyer,
K. (eds.) ITS ’14 (2014)

7. Mathan, S.A., Koedinger, K.R.: Fostering the Intelligent Novice: Learning From
Errors With Metacognitive Tutoring. Educational Psychologist 40(4), 257–265
(2005), http://www.tandfonline.com/doi/abs/10.1207/s15326985ep4004 7

8. Matsuda, N., Cohen, W.W., Koedinger, K.R.: Teaching the Teacher: Tutoring Sim-
Student Leads to More Effective Cognitive Tutor Authoring. IJAIED 25(1), 1–34
(2014)

9. Matsuda, N., Yarzebinski, E., Keiser, V., Cohen, W.W., Koedinger, K.R.: Learning
by Teaching SimStudent – An Initial Classroom Baseline Study Comparing with
Cognitive Tutor. IJAIED (2011)

10. Pane, J.F., Griffin, B.A., McCaffrey, D.F., Karam, R.: Effectiveness of Cognitive
Tutor Algebra I at Scale. Tech. rep., RAND Corporation, Santa Monica, CA (2013)

11. Rivers, K., Koedinger, K.R.: Automating Hint Generation with Solution Space
Path Construction. In: ITS ’14, pp. 329–339. Springer (2014)

12. Roll, I., Aleven, V., Koedinger, K.R.: The Invention Lab : Using a Hybrid of Model
Tracing and Constraint-Based Modeling to Offer Intelligent Support in Inquiry
Environments. In: ITS ’10. pp. 115–124 (2010)

13. Sao Pedro, M.A., Gobert, J.D., Heffernan, N.T., Beck, J.E.: Comparing Pedagog-
ical Approaches for Teaching the Control of Variables Strategy. In: Taatgen, N.,
van Rijn, H. (eds.) CogSci ’09. pp. 1–6 (2009)

14. Schneider, M., Rittle-Johnson, B., Star, J.R.: Relations among conceptual knowl-
edge, procedural knowledge, and procedural flexibility in two samples differing in
prior knowledge. Developmental Psychology 47(6), 1525–1538 (2011)

15. Tenison, C., MacLellan, C.J.: Modeling Strategy Use in an Intelligent Tutoring
System: Implications for Strategic Flexibility. In: ITS ’14, pp. 466–475. Springer
(2014)

16. Waalkens, M., Aleven, V., Taatgen, N.: Computers & Education. Computers &
Education 60(1), 159–171 (Jan 2013)

AIED 2015 Workshop Proceedings - Vol 5 44




