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Abstract
Understanding the nature of human intelligence and developing intelligent agents capable of mod-
eling humans are fundamental goals of cognitive systems research. Prior work modeling human
problem solving has explored how hand-constructed domain models (e.g., production-rule models)
can be used to explain human behavior. Typically, these models account for how humans improve
their problem-solving performance given practice (i.e., speed-up learning), but they do not account
for how humans acquire initial domain models. One approach that humans use to acquire knowl-
edge in a new domain is apprenticeship learning, or learning from demonstrations and feedback
from an expert. In the current work, I formalize the apprenticeship learning task for digital learning
environments and present the Apprentice Learner Architecture, which provides a framework for
building models of apprenticeship learning that align with this task formalization. Next, I briefly
review how this model can be used to simulate and predicting human behavior in intelligent tutors.
Finally, I conclude with directions for future work.

1. Introduction

One of the ultimate goals of cognitive systems research is to construct agents that are capable
of human-level learning and problem solving. Prior research towards this goal has explored how
researcher-authored models can be used to explain or emulate human behavior. For example, re-
searchers using ACT-R (Anderson, 1993) account for human behavior by encoding psychological
theories into cognitive models. These models embody the researchers’ theories of the facts, skills,
and goals that humans use when completing a given task. Researchers can then empirically test
a theory through the comparison of the respective model’s behavior with human behavior. Other
researchers, using different architectures, such as SOAR and ICARUS (Langley, Laird, & Rogers,
2009), have taken a similar approach when attempting to mirror human-level capabilities. For exam-
ple, TACAIR-SOAR (Jones, 1999), a hand-built cognitive model of combat fighter pilots, consists
of over 5200 production rules that have been shown to generate believable human-like behavior dur-
ing military training simulations. Key components of these systems include their abilities to solve
novel problems using search and to improve their problem-solving performance given practice via
techniques like hierarchical skill learning or reinforcement-learning.

While these systems possess the ability to learn from problem-solving experiences, they still
require researchers to construct initial models of the facts, skills, and goals for each domain. For
example, architectures such as ACT-R, SOAR, and ICARUS have capabilities for learning from
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Figure 1: The Apprentice Learner Architecture and its interactions between the work environment
and expert tutor. The architecture possesses three learning mechanisms (how, where, and when) to
generalize demonstrations and feedback into skill knowledge that can be used for problem solving.

problem solving (Langley et al., 2009). However, for learning from problem solving to be successful
these initial models must be complete in the sense that all novel problems encountered by an agent
must be solvable using the initially provided cognitive model. This is often a difficult requirement
to meet because it is difficult to know a priori all the knowledge that an agent will need to succeed.

In contrast, when a human is tasked with acquiring knowledge in a novel domain they rarely
work alone to construct new domain knowledge through problem solving (assuming they have suf-
ficient prerequisite knowledge). Instead, they often rely on existing domain experts to provide them
with examples and feedback in the target domain. Students then reflect on these examples and feed-
back in order to learn new domain knowledge that can be used in subsequent problem solving. This
kind of learning, which I refer to as apprenticeship learning, is different from learning through prob-
lem solving in that it is primarily about transferring expertise to the novice rather than the novice
discovering the knowledge on their own.

In the current work I formalize apprentice learning as the task of learning new domain knowl-
edge from expert demonstrations and feedback, and discuss how this task formalization aligns with
the behavior of tutoring systems (Vanlehn, 2006), a type of digital learning environment that is
designed to support human apprenticeship learning and that can provide data of human apprentice
learning. Next, I present the Apprentice Learner Architecture, a framework for building models of
apprenticeship learning within this formalization and discuss how it can be used to model human
learning in a fraction arithmetic tutor. Finally, I discuss directions for future work.

2. Apprenticeship Learning

The apprentice learning task, which is depicted in Figure 1, consists of an agent (e.g., and appren-
tice learner agent or a human agent) learning from demonstrations and feedback on problem-solving
attempts in a work environment. Ideally, the work environment is constructed to make the agent’s
thinking visible (i.e., an agent must show each of the problem-solving steps rather than just a final
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solution), so that experts can provide hints and feedback on intermediate steps. If an agent knows
what to do next, then it takes action in the work environment. In response, the work environment is
updated and annotated with feedback by an expert tutor. The agent receives the expert’s feedback
from the work environment and uses it to improve its skills. After skill learning, it applies this
knowledge towards solving the next step in the modified problem state. In the event that the agent
does not know what to do next, it can request a demonstration from the expert who will then pro-
vide it directly in the environment. The agent observes this demonstration in the environment and
updates its skill knowledge. This process is repeated until the expert is convinced that the agent has
successfully learned the target skills. Previous work from the intelligent tutoring system literature
has modeled the step-level interactions between an expert tutor and the work environment (Vanlehn,
2006), but not the interactions between the learning agent and the work environment. The Appren-
tice Learner Architecture (shown in left box of Figure 1) is a computational theory of apprenticeship
learning that aligns with the step-level interactions described by VanLehn (shown in the right box
of Figure 1).

The Apprentice Learner Architecture posits three learning mechanisms to induce new skills
from prior feature and function knowledge and observed demonstrations and feedback. When given
a demonstration, the how learner uses function knowledge (e.g., a function for adding two numbers)
to search for a sequences of functions that can explain the observed demonstration. After discover-
ing a function sequence, the where learner acquires general perceptual patterns for recognizing the
elements used in the discovered sequence. Finally, the when learner uses the tutor state, augmented
with feature knowledge (e.g., a feature for recognizing a plus or multiplication sign), to identify
the conditions under which the discovered sequence should be executed. The combination of the
components discovered by the how, where, and when learners constitute a skill, or a new piece of
domain knowledge. After a new skill is learned, it can be applied in subsequent problem solving.

In order to apply learned skills, the Apprentice Learner Architecture posits that learners use
a basic Recognize-Act cycle to apply their skill knowledge towards solving problems. When a
learner is presented with a problem, they query their skill knowledge to determine if any known
skills are applicable. If an applicable skill is found, then it is executed and correctness feedback on
the resulting action is utilized by the when learner to further refine the conditions under which the
skill can be executed. In the event that no skills are applicable, then, as mentioned previously, the
learner requests a demonstration that is passed to the how, where, and when learners to produce a
new skill.

This architecture has been used construct models of human apprenticeship learning (i.e., par-
ticular choices of of algorithms for the where, when, and how learning) in a fraction arithmetic
tutoring system. In a recent study, I showed that generated models were able to predict the outcome
of a human problem sequencing experiments in the fractions tutor (MacLellan, Harpstead, Patel, &
Koedinger, 2016). Additionally, I demonstrated how the architecture can be used to generate and
test alternative models of apprenticeship learning to see which models yield behavior that is more
similar to the human behavior.

3



C.J. MACLELLAN

3. Future Work

I am currently exploring how to better connect the Apprentice Learner Architecture with existing
cognitive systems work, such as mapping the different learning mechanisms of my architecture
to the learning components of existing cognitive architectures. For example, the where and when
learners are similar to the learning mechanism used to refine action conditions in ICARUS and
SOAR. Additionally, the how learner utilizes search similar to the problem solvers used by these
architectures. However, there are key differences that still need to be addressed, such as how oper-
ators and goals should be constructed. Currently, my architecture relies on features and functions
that lack domain semantics, so it is unclear how this will impact problem solving in the cognitive
architecture. Additionally, my architecture is state, not goal driven. It is unclear how similar behav-
ior can be achieved using a cognitive architecture and where goal structure, which is necessary to
direct problem solving in these architectures, would come from.

I am also exploring alternative variations of my architecture that have fewer learning compo-
nents. For example, the where and when components might be merged because they can both be
framed as condition learning and combined. Additionally, it might be possible to unify all three
mechanisms into a single mechanisms. I am currently exploring which of these alternative models
is better supported by the human tutor data.
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