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Abstract. Education research has identified strategic flexibility as an
important aspect of math proficiency and learning. This aspect of student
learning has been largely ignored by Intelligent Tutoring Systems (ITSs).
In the current study, we demonstrate how Hidden Markov Modeling can
be used to identify groups of students who use similar strategies during
tutoring and relate these findings to a measure of strategic flexibility. We
use these results to explore how strategy use is expressed in an ITS and
consider how tutoring systems could integrate a measure of strategy use
to improve learning.

1 Introduction

Strategic flexibility in arithmetic problem solving is both an important reflection
of knowledge [1, 2] and a recognized predictor for future learning [3, 4]. The
National Mathematics Advisory Panel [5] lists flexibility along with accuracy
and speed of problem solving as the core defining features of a student’s math
proficiency. Despite the importance placed on flexible problem-solving, work on
Intelligent Tutoring Systems (ITSs) has traditionally focused on the accurate
completion of problem steps rather than on the strategies used by students to
complete them. The current study identifies differences in strategy use within an
ITS, relates these differences to a pencil and paper measure of strategic flexibility,
and explores how ITSs may be designed to support strategic flexibility.

Strategic flexibility refers to a student’s knowledge of multiple strategies and
their ability to choose the best of those strategies for a given problem [6, 4].
Measures of strategic flexibility correlate with both the student’s procedural
and conceptual knowledge [1, 7, 4]. Schneider et al. [2] found a bidirectional re-
lationship between procedural and conceptual knowledge and hypothesized that
these two types of knowledge improve strategic flexibility in an iterative fash-
ion. Students who have high strategic flexibility are more likely to adapt their
strategies, transferring their knowledge to solve new problems [8, 4]. Conversely,
students who lack strategic flexibility struggle to solve more difficult or unfa-
miliar problems that require the use of different strategies [6]. An active area of
research concerns developing pedagogical methods to foster strategic flexibility
and understanding the impact of strategic flexibility on problem solving.



Studies of ITSs have shown their effectiveness for developing students’ proce-
dural and conceptual knowledge in math problem solving [9–11]. Little research,
however, has explored the impact of ITSs on strategic flexibility. Unlike the tra-
ditional studies of strategic flexibility, which use pencil and paper, ITSs confine
students to working within the structure of the interface. This raises the question
of if and how different strategies present themselves in rigid tutoring interfaces.
One study focuses on the effects of allowing strategic flexibility within a tutor
[12]. Measuring the number of times students made variations from the main
strategy path, Waalkens et al. found that students did not take advantage of
the flexibility permitted by the interface. Without instructing students to solve
problems using multiple strategies, the likelihood of a student using a divergent
strategy is low. Previous research on strategic flexibility has found that although
students may be aware of many strategies, they often limit their choice to the
most efficient one when problem solving [6]. Acknowledging these earlier find-
ings, we identify two ways to improve research on strategic flexibility within
ITSs. First, researchers must actively encourage the use of different strategies
if they wish to observe student’s strategic flexibility. Second, as we will dis-
cuss, researchers should use more sophisticated methods for modeling strategies
and detecting how they are used. Introducing these changes to ITS research of
strategic flexibility will make it possible for researchers to explore the effect of
strategically focused interventions on how well students solve future problems.

Outside of the math domain there has been some work on developing more
complex methods for assessing strategy from the choices students make in ITSs.
Piech et al.[13] looked at differences in the paths that introductory programmers
take when completing programming assignments and found that strategic differ-
ences in two homework assignments at the beginning of the semester predicted
students’ midterm grades . These sequences or paths can be seen as a reflection
of the strategies that a student employs during problem solving. Additionally,
the area of research on meta-cognitive hint seeking identifies the strategies stu-
dents use when unable to solve problems [14, 15]. Using a model of hint seeking,
Roll et al. [16] found that recognizing and intervening when students are using
bad hint seeking strategies improves learning. Work from these different areas
demonstrates that strategy use can be identified within a tutoring system, and
also suggests that these results can identify opportunities for tutoring.

1.1 The Current Study

The current study bridges research on strategic flexibility in mathematics and
work identifying strategy use in ITSs. With evidence supporting the value of
strategic flexibility in math, it is important that tutoring systems develop ap-
proaches for understanding and supporting strategic flexibility. In the current
study, we use Hidden Markov Modeling (HMM) to cluster participants into
strategically distinct groups. We present evidence supporting the hypothesis that
these groups differ on a measure of strategic flexibility collected using the pencil
and paper test developed by Rittle-Johnson and Star [7]. Furthermore, we use



this HMM method to explore how flexibility presents itself in a math ITS as dif-
ferences in tutor behavior. We conclude with recommendations concerning how
ITSs can be built to measure and encourage flexible strategy use.

2 Materials and Methods

We used an observational design in which all participants completed the same
tutor curriculum. Students completed a 20-minute pencil and paper math test to
assess proficiency with algebraic problem solving and strategic flexibility. A week
after taking this test, students spent an hour and a half in the school computer
lab working with an algebra ITS.

2.1 Participants

There were 112 eighth and ninth grade Algebra I students (72 eigth grade; 57
females; mean age 13.6, SD 1.2) who took a math test and participated in the
tutoring. There were seven eighth grade classes (3 advanced and 4 regular) and
four ninth grade classes (2 regular and 2 remedial). All students attended the
same large, urban public school. The school consisted of 60.6% Caucasian, 33.5%
African American, and 1.3% Asian. Approximately 52% of students qualified for
free or reduced lunch.

There were four teachers whose classes participated in this study. Each
teacher taught the same grade and advancement level to students in their class.
All four teachers used the same algebra curricula, which was supplemented with
work on the ALEKS online math program. All classes had previously covered
the distributive property and solving multi-step equations. Human subjects’ ap-
proval and consent from the school was obtained prior to conducting the study.

2.2 Materials

Assessment We used a modified version of the Rittle-Johnson and Star [7]
assessment, which assesses mathematical knowledge (both conceptual and pro-
cedural) and strategic flexiblity for one- and two-step algebra equation problem
solving. We implemented only the procedural skill and strategic flexibility por-
tion of the assessment. The test of strategic flexibility assessed three features;

Table 1. An example of the two strategies for solving the two problem types. Both
strategies are correct, but the green strategies are those biased by the tutor.

Divide Problem Divide Problem Multiply Problem Multiply Problem

Distribute Strategy Both Sides Strategy Distribute Strategy Both Sides Strategy

2(3x + 5) = 6 2(3x + 5) = 6 (8y−4)
2

= 6 (8y−4)
2

= 6

2 ∗ 3x + 2 ∗ 5 = 6 2(3x+5)
2

= 6
2

(8y)
2

− 4
2

= 6 2 ∗ (8y−4)
2

= 6 ∗ 2



the ability to generate, recognize, and evaluate multiple strategies. Although we
followed the organization of this assessment, we modified many of the math prob-
lems tested in this assessment in order to better accommodate an older student
population and focus more directly on the problems being studied within the tu-
toring system. The student’s procedural accuracy was calculated by percentage
of problems correctly solved.

Problem Types Work on strategic flexibility has found that while students
may be aware of many strategies they will often learn to use the most efficient
strategy for a specific problem [4, 6]. To encourage the use of different strategies
we used 6 variations of the linear equation. Students saw 6 examples of each type
of problem. For this study we collapsed the 6 problem types into two categories;
“divide problems,” in which the problem can be solved by dividing both sides
by a coefficient, and “multiply problems,” in which the problem can be solved
by multiplying both sides by a coefficient (Table 1). While both of these prob-
lem types can be solved using either of two correct strategies, “distribute” or
“both sides”, we took several actions to bias strategy use. First, the tutor hints
recommended different strategies for the two problem types. Table 1 displays
the recommended strategies in green. Second, distribute required fewer tutor ac-
tions than the both sides strategy for divide problems, while the both strategies
required the same number of actions for multiply problems. Finally, if students
chose their strategy to avoid large fractions, this would promote the use of the
multiply strategy for the multiply problems. This last decision-making heuristic
applies more for problems that require student calculation.

Intelligent Tutoring System We used a modified version of Cognitive Tu-
tor [11]. The tutoring interface directs students to select the step the computer
should take to solve the problem. Students can choose between actions to “trans-
form” or “solve” the problem. The transform command directed the computer
to take actions to change the structure of the equation. Table 1 shows how
the transformation of “distribute,” “multiply both sides” or “divide both sides”
would change the equation. Solve actions instruct the computer to perform var-
ious calculations, such as combining like terms. This is an important feature of
the tutor because students must indicate each step taken to solve the problem
rather than combining steps in their calculations.

2.3 Data Analysis

With strategic flexibility so closely related to procedural skill [1, 2], the inclusion
of off-task strategy paths would bias our clustering method to cluster based
on students’ use of off-task strategies. Because we are interested if the correct
strategies students learn to use are related to their strategic flexibility we restrict
our analysis to on-task actions only. For each student we recorded the choices
made when faced with the problems shown in Table 1.



We based our analysis on the HMM clustering method described by Smyth
[17] and Piech et al. [13]. Detailed justification of this method can be found in
these two papers, so we will only summarize the steps of the analysis. Using
the on-task student actions, we fit an HMM model to each student’s action
sequence; the model had a hidden state for every possible action, where each
state had 100% probability of emitting the action represented by that state (this
is essentially a Markov Chain). After fitting the model to a student’s actions,
we modified the transition probabilities between hidden states so that none of
the transition probabilities were equal to zero. We did this by replacing all zero
probability transitions with a small constant (1 × 10−10) and renormalizing the
transition probabilities. Next, we calculated the log probability that this model
fit each of the other student’s action sequences individually. After doing this
for all students, we calculated the distance between two subjects sequences as
the average of the log probability of one subject’s model predicting the other
subject’s data with the log probability of the other subject’s model predicting
the first subject’s data. Finally, we used these pairwise distances to cluster the
students. We used the k-mediods clustering algorithm [18] to ensure clusters of
similar size and to deemphasize the effect of outliers. We determined the number
of clusters by fitting models with 2 through 10 clusters and evaluating the log
probability with leave-one-subject-out cross-validation. We found four clusters
best fit the data. The parameters of these 4 clusters were next used to initialize a
composite HMM model, which had additional latent states for each cluster that
transitioned only to their respective smaller HMMs. After initializing this new
HMM using the individually computed transition probabilities, we retrained the
composite HMM using all the data. The resulting estimates are considered better
than those generated by separately training the model on the four smaller HMMs.
This method is particularly useful for building descriptive rather than predictive
models of the data [17] and is thus useful for understanding the common strategy
choices displayed during tutoring.

3 Results

3.1 Flexibility Score

Our study replicates the results of Rittle-Johnson and Star [1]. We found a
significant correlation between strategic flexibility and procedural knowledge
r(110) = 0.73, p < 0.001.

3.2 HMM Clustering

We clustered students based on their correct problem solving paths using the
method described in section 2.3. We best fit a four cluster model. We found
a significant difference in the average strategic flexibility scores of students in
the different clusters, f(3, 107) = 10.1, p < 0.001. Figure 1 shows the mean and
standard errors for the four clusters. Post hoc comparisons using the Tukey HSD
test indicated that the only significant (p < 0.05) differences were between the
2nd and 3rd cluster and the 3rd and 4th cluster.



Fig. 1. The mean flexibility of the four identified clusters with standard error.

3.3 Exploring Strategic Flexibility in Tutor Behavior

We used the transition probabilities generated from the HMM training to explore
the different strategies learned. The four clusters of students showed distinct
patterns of strategy use. Figure 2 shows the predominate strategies used by the
four groups. In cluster 2 (n = 25) and cluster 3 (n = 54), students alternate
between the tutored strategies. In cluster 1 (n = 16) and cluster 4 (n = 16), on
the other hand, students use the same strategy for both problem types. Students
in cluster 1 distribute on both problems, whereas students in cluster 4 apply
either divide or multiply to both sides of the equation in order to eliminate the
coefficient.

We next wanted to test if the strategies presented by each group of students
were learned over the course of tutoring. To see if students increased their use
of either of the dominant strategies of each cluster (displayed in Figure 2) we fit
each cluster’s data to an additive factor model (AFM) [19]. For this paper we
are interested in only using this model descriptively to observe if students are
increasing their use of the dominant strategies. We found that as students gained
practice with the problems they increased their use of the dominant strategies,
these slopes are displayed in Table 2.

Table 2. The coefficient for the learning rate of each cluster’s dominant strategy by
problem type, as computed by the Additive Factors Model.

Cluster Divide Problems Multiply Problems

1 .21 .05
2 .05 .04
3 .13 .02
4 .14 .02



Fig. 2. The student behavior for each cluster. The Divide (D) and Multiply (M) labels
represent the problem type and the Distribute and Both Sides labels denote the strategy
taken. The node size denotes the number of times it was visited. Green nodes are
strategies that were suggested by the tutor, blue nodes are (valid) untaught strategies,
and orange nodes are hints. Arrow gradients denote transition probability.

4 Discussion

The ability to flexibly solve math problems is a valued measure of proficiency and
important to future learning [5, 8]. Few studies have investigated how strategic
flexibility is displayed in ITSs, and perhaps as a result no studies have directly
measured math flexibility using an ITS. The current study uses a method pre-
viously employed in a different domain [13] to identify groups of students in a
math ITS that differ in how they apply strategies to solving equations.

First, our findings from the behavioral pre-test replicated results from Rittle-
Johnson and Star [1, 7], showing a correlation between strategic flexibility and
procedural knowledge. Understanding how strategic flexibility is represented dur-
ing tutoring is less clear. The Rittle-Johnson and Star measure of strategic flex-
ibility directs students to generate multiple solution paths; however, in a tutor-
ing setting students are not prompted to choose multiple strategies. Studies of
strategic flexibility have observed that when students are not asked to generate
multiple strategies they will often use only one strategy to solve problems [4,
6]. This makes it difficult to observe flexible strategy use indirectly. To combat
this challenge, our study used two sets of problems, which despite being solvable
by the same two methods, were set up to favor different methods. As previous
research would suggest, students remain relatively consistent within problem
types; however, between problem types students changed strategies. When stu-



dents appropriately adjust their strategy this suggests that these students are
more strategically flexible and would be better able to adapt and transfer their
knowledge to similar, but novel problems– testing this hypothesis is one possible
direction for future work.

In the current study we used a variation of the HMM clustering method used
by Smyth [17] and Piech et al. [13] to cluster participants according to their
correct action sequences. This clustering method, while conducted without in-
formation about a student’s strategic flexibility measure, distinguished groups
that significantly differed in strategic flexibility. This distinction suggests that
the strategies students choose are reliant on their strategic flexibility. The lack
of a significant difference between clusters 1 and 3 suggests that students may
be less likely to use the optimal strategy on multiply problems. This can be
explained by the lack of a direct benefit for using the both sides strategy on the
multiply problems, as discussed in section 2.2. We ran this study to develop a
method for identifying strategy use in math problem solving and while experi-
mental manipulations must be done to learn more about the underlying causes
of strategic flexibility in the tutor, the exploratory analysis from our work sets
forth multiple areas of potential research.

The HMM clustering provides some insight into how the strategic flexibility
scores translate into strategy use during tutoring. Students in cluster 3 show
flexibility in their ability to switch between the distribute and the both sides
strategy. This is echoed in their high strategic flexibility scores. Students in
cluster 2 show a similar pattern, however their strategy path also shows that
these students are reliant on the hints that direct them towards these strategies.
The positive slopes from the AFM, indicate that while these students are learning
to apply these strategies more often over the course of tutoring, this is at a slow
rate. Students in cluster 1 generally use the distributive strategy to solve both
problem types. Although there is some use of the both sides strategy, users of this
strategy are seen returning to the distribute strategy. The positive learning gains
reported from the AFM indicate that over the course of tutoring students become
more rigid in their use of the distribute strategy on both problems. Students in
cluster 4 use the both sides strategy to solve these problems and increase in their
use of this strategy over tutoring. The behavior of cluster 4 scoring the lowest
on the strategic flexibility and only using the both sides’ strategy suggests that
these students may not recognize distribute’ as a potential strategy for solving
these problems and could benefit most from an intervention.

As an observational study, we are limited in the causal claims we can make
about the relationship between strategic flexibility and strategy use in the tutor.
However, the methods used in this study can be applied in future experiments.
First, this study demonstrates a means of observing strategy use by designing
problems to specifically favor some strategies over others. Future studies could
use a model of students’ decision-making heuristics (i.e., a model of how they
decide between possible next actions, such as avoiding fractions) to identify prob-
lems that favor different strategies. These problems could be used to triangulate
the strategies that students know and do not know.



The current study used a version of the tutor in which students had to
explicitly select each transformation of the problem. This tutoring format lends
itself well to the method of strategy detection that we use, however, it may not
apply to other tutors. Future work should extend the model to contexts in which
students have more freedom in making multiple transformations in a single step,
such as is seen in Waalkens et al. [12]. We expect different interfaces may foster
strategic flexibility to different levels.

Two questions of great interest remain present in the field: How best can
strategic flexibility be improved and to what extent does that improvement in-
fluence learning? While these questions are outside the scope of the current study,
the ability to identify students based on their strategy use can establish the ef-
fects of an experimental intervention on strategy use and help identify individual
differences in response to intervention. Paired with AFM, this strategy cluster-
ing method can identify the strategies students are using and if these strategies
are increasing in use. Just as work by Yudelson and Koedinger [20] has demon-
strated learning gains with an improved model of procedural skills, so should
researchers investigate how modeling strategic flexibility impacts learning.

In conclusion, we investigated the relationship between strategic flexibility
and the strategies students used in an ITS using HMM clustering. We discovered
that students could be clustered into four distinct strategy groups which differed
on their average flexibility scores. A closer look at the strategies used by the four
groups showed that students converged in their use of these strategies over the
course of tutoring. An exploration of the different strategies suggested multiple
explanations for students’ strategy use including learning from tutor hints, gaps
in knowledge, and decision making heuristics favoring different strategies. This
study is an first step in integrating models of strategic flexibility into ITSs.
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