
Reasoning About DrScheme Programs in ACL2

Melissa Wiederrecht, Christopher MacLellan, and Ruben Gamboa

University of Wyoming
Department of Computer Science

Laramie, WY

Abstract. Beginning programmers need to learn more than the syn-
tax of programming languages. They also need to learn how to reason
about the programs they write. Thus we believe that beginners will ben-
efit from tools that help them understand their programs, just as they
already benefit from IDEs that help them to build and debug their pro-
grams. This paper describes a project aimed at automating some of the
techniques required to reason about programs in Beginning Student Lan-
guage (BSL), the first language in DrScheme’s How to Design Programs
curriculum [4]. The automation is based on the theorem prover ACL2.

1 Introduction

Beginning programming students have a much larger job in front of them than
mastering the syntax of their first programming language. These students need
to learn how to think like programmers. But reasoning about programs involves
sophisticated techniques from logic, which are usually at the levels of graduate
students or advanced undergraduates, certainly not freshmen. So what can help
them to fill the gap between a student’s first intuition as to how a program
should be written and what is in fact a correct solution to a given problem? We
propose that a mechanical theorem prover, written fresh, automated, extended,
and embellished with pedagogical apparatus could be used to provide students
with a tool at their fingertips that would grant them instant feedback about the
correctness of their programs and what they might possibly do to improve them.

Writing theorem provers is hard! So the most convenient solution to this
problem is to take an existing mechanical theorem prover, such as ACL2 [7],
and modify it to our liking. However, existing theorem provers were designed for
researchers, not for students. For example, a beginning student could probably
manage to write factorial in a perfectly reasonable manner in Lisp like this:

(defun fact (n)
(if (= n 0)
1
(∗ n (fact (− n 1)))))

A more forward-thinking student may write it in the following form instead:

(defun fact (n)



277

(if (≤ n 0)
1
(∗ n (fact (− n 1)))))

However, neither of these definitions is appropriate in ACL2. The reason is
that ACL2 views definitions as axioms that introduce new function symbols via
equality. The first definition above introduces the function fact as the unique
solution to the equation

(fact n) = (if (= n 0)
1
(∗ n (fact (− n 1))))

But this equation does not have a unique solution! There are many functions
that agree with fact on the naturals, but differ in the values they assign to other
numbers. Worse yet, ACL2 is a total logic, so the expression (fact ’hello) must
have some value. This is a lot for a beginning programmer to take in!

Other languages, more suitable for beginners (and some would argue for
professionals as well) eschew the notion that definitions introduce equations.
Instead, the languages define rewrite rules that transform terms in the language
into other terms. Eventually, arbitrary expressions are transformed into terminal
expressions, i.e., results. From this viewpoint, both of the definitions above for
fact are appropriate, and they can be viewed as introducing new rewrite rules into
the language. This is the framework followed by Beginning Student Language
(BSL) and all the other languages in the How to Design Programs sequence of
scheme-like languages [4, 3].

Ultimately, we believe that a new theorem prover tailored specifically to rea-
soning about programs in these languages is required. It may even be necessary
to define several different theorem provers, corresponding to the different lan-
guage levels in the How to Design Programs sequence. But before that process
can be undertaken, it is necessary to determine which inference rules and strate-
gies work well for typical beginning programs written in BSL. That was the goal
of this project. In order to test our ideas, we implemented them in ACL2 by
writing an interpreter for BSL in ACL2. This embedding of BSL in ACL2 per-
mitted us to reason about BSL programs mechanically. More precisely, ACL2
reasoned about the behavior of the BSL interpreter on certain ACL2 expressions
that corresponded to BSL programs and terms.

The How to Design Programs philosophy is intertwined with the DrScheme
programming environment, which offers a flexible and powerful programming
environment for users in a wide range of programming ability [5]. A testament
to the flexibility of DrScheme, DrACuLa is an environment that allows users
to interact with the theorem prover ACL2 inside DrScheme [2]. The goals of
the DrACuLa project overlap with ours, in that both projects aim to introduce
beginning programmers to formal ways of reasoning about programs. In fact,
DrACuLa has been used to teach logic to freshmen and to more advanced un-
dergraduates. These experiences have helped to inform and motivate our project.



278

In the remainder of this paper, we will describe various versions of our inter-
preter and the theorems that we were able to prove in ACL2 about programs in
BSL.

2 First Iteration

Our first attempt at an interpreter for BSL in ACL2 consisted of several mutually
recursive functions, the key functions of which are the following:

– bsl: evaluate a scheme expression
– bsl-list: evaluate a list of scheme expressions (e.g. a list of function argu-

ments)
– bsl-builtin: evaluate an expression that matches a form built into BSL
– bsl-userdefined: evaluate an expression that is defined in the current BSL

environment

The interpreter was defined using the standard method for Lisp interpreters,
dating back to McCarthy [8]. The mutually recursive functions accept three ar-
guments: a BSL expression, an environment mapping variable names to values,
and a counter. The last argument is necessary because ACL2 functions must be
proven to terminate before the system will accept their definition. Since inter-
preters cannot generally guarantee termination, the counter is used to arbitrarily
halt execution after a given number of steps.

Similarly, the functions return three values. The first is a status marker that
can be either success, error , or timeout . The marker success is returned when
the interpreter manages to evaluate the expression. On the other hand, if the
interpreter encounters an invalid input while executing the program, it returns
error . This may happen, for example, if an undefined (in BSL) function is called,
or if an arithmetic operator is applied to a string. Finally, timeout is returned
if the value provided for the counter was not sufficient to evaluate the given
expression. The second returned value of these functions is the actual value of
the expression, if the evaluation was successful. And the third returned value is
the new version of the environment. This can be modified, for example, when
the expression that was evaluated was a BSL define form.

For example, the environment ’((x . 1) (y . 2)) gives the variable x a value of
1, and y , 2. So the expression

(bsl ’(+ x y) ’((x . 1) (y . 2)) 1000)

returns the value

(list ’success 3 ’((x . 1) (y . 2)))

Notice that the environment is unchanged by the addition. Conversely, the ex-
pression

(bsl ’(+ x z) ’((x . 1) (y . 2)) 1000)



279

returns the value

(list ’error nil nil)

The error is encountered when bsl attempts to evaluate the variable z , which is
not bound in the environment. Finally, the expression

(bsl ’(+ (∗ 2 x) y) ’((x . 1) (y . 2)) 1)

returns the value

(list ’timeout nil nil)

In this case, more than one step of bsl is required to evaluate the given, nested
expression.

The first class of theorems that we proved had to do with safety. A represen-
tative, albeit simple, example is the following:

(defthm bsl-of-any-number
(implies (acl2-numberp expr)

(not (equal (car (bsl expr env c))
’error)))

:hints (("Goal"
:expand (bsl expr env c))))

This (modest) theorem establishes that bsl does not encounter an error when
evaluating numeric literals. We proved several such theorems, with the goal of es-
tablishing that no errors would be encountered while evaluating more substantial
programs, such as fahrenheit-to-celsius or factorial .

However, as we proceeded, we noticed that we were continuously instructing
ACL2 to expand recursive definitions, such as bsl . ACL2 generally does not open
up recursive definitions, because it would never know when to stop expanding.
In our case, however, expanding all the mutually recursive functions turned out
to be exactly what was needed for ACL2 to prove our theorems automatically.

Explicitly opening up recursive definitions was tedious, but what eventually
led us to abandon this approach happened when we started proving theorems
that included built-in functions (e.g., ∗). At this point, we discovered that our
theorems were not being used as rewrite rules because they were all written in
this negative form. ACL2 does not know how to substitute what an expression
is not equal to into the proof of a new theorem.

3 Second Iteration

After our first experience with reasoning about the recursive functions in the bsl
family, we decided to start fresh with a new approach. Instead of ruling out error
as a possible result, our new theorems explicitly stated what values bsl would
return for certain expressions. A representative example is the following:

(defthm bsl-of-any-number-2
(implies (acl2-numberp expr)



280

(equal (bsl expr env c)
(if (and (integerp c)

(< 1 c))
‘(success ,expr ,env)
’(timeout nil nil))))

:hints (("Goal" . . . )))

When written in this positive form, the theorems became useful rewrite rules in
ACL2. This meant that we did not have to instruct ACL2 to expand every single
occurrence of the recursive functions, but we still did have to expand many of
them. We included into each of these theorems both the fact that the evaluation
succeeded and that it returned the correct answer.

Because ACL2 could now use our theorems as rewrite rules, the proofs of
theorems that included built-in functions became almost trivial. We moved on
to tackle theorems about functions that included recursion, specifically sum-up-
to-n, which finds the nth triangle number by adding 1 through n.

It was at this point that we discovered the fatal flaw in our interpreter: sadly,
ACL2 does not do well with mutually recursive functions.

4 Third Iteration

We started over again, this time rewriting the interpreter from scratch. We com-
bined all of our mutually recursive functions into one gigantic, singly recursive
function bsl . The translation follows the approach to writing mutually recursive
functions in NQTHM, which does not support mutual recursion directly [1]. This
uses a flag to distinguish between the functionality of bsl and bsl-list . In other
words, we added a parameter to the function that would be set to false when we
wanted to evaluate a single expression, and true when we wanted to evaluate a
list of expressions.

With this new interpreter, we were able to prove partial correctness results
for many functions, including recursive functions, such as sum-up-to-n. In fact,
we were able to prove that when the input argument is a natural number, the
BSL version of sum-up-to-n is equivalent to a version written in ACL2, even
though the ACL2 version must be written to work for any possible input value,
as described in the introduction.

(defthm sum-n-partial-correctness
(implies (and (sum-n-defined env)

(true-listp expr)
(equal (len expr) 2)
(equal (car expr) ’sum-n)
(equal (car (bsl expr nil env c)) ∗success∗)
(equal (cadr (bsl (second expr) nil env c)) n)
(integerp n)
(<= 0 n))

(equal (bsl expr nil env c)



281

(list ∗success∗
(sum-n n)
env))))

Notice the hypothesis that bsl succeeds when evaluating the expression. This
corresponds to the notion of partial correctness.

We were also able to prove that the BSL expression (∗ n (+ n 1) 1/2) is
equivalent to the same expression in ACL2, again when n is a natural number.
It is, of course, possible to prove in ACL2 that the ACL2 version of sum-up-
to-n is equal to (∗ n (+ n 1) 1/2), and taken together with the two previous
theorems, this also shows that the BSL expressions are equal to each other. Such
results demonstrate how our approach can be used to reason mechanically about
beginning programs in BSL.

In the process of carrying out these proofs, we learned some valuable lessons.
First of all, we discovered the importance of monotonicity results. Specifically,
reasoning about the counter argument to bsl turned out to be cumbersome in
the best cases, and completely impractical when reasoning about recursive func-
tions. But given that when bsl succeeds, it always returns the same value for
the expression, it is possible to ignore specific values of the counter, and simply
use one that is “large enough” to evaluate the current expression, and hence
all its subexpressions as well. This latter style of reasoning—that the success-
ful evaluation of an expression guarantees the successful evaluation of all its
subexpressions—took up a substantial amount of the effort.

Finally, it is well known that induction is the most appropriate way of rea-
soning about recursive functions. Moreover, theorem provers like ACL2 can au-
tomatically generate induction schemes by considering the definition of the re-
cursive functions appearing in a particular theorem. However, when reasoning
about BSL programs, the only recursive function that ACL2 sees is the inter-
preter bsl itself—and its recursive definition is unlikely to be useful in reasoning
about most functions in BSL.

We discovered that this problem can be solved by defining a correspond-
ing function in ACL2, and then instructing ACL2 to induct according to this
definition. This also required some care when stating the correctness theorem.
For example, the statement of sum-n-partial-correctness includes the following
hypothesis:

(equal (cadr (bsl (second expr) nil env c)) n)

This hypothesis introduces the variable n, and such hypotheses are usually
avoided in ACL2, since they introduce free variables in the corresponding rewrite
rule, which renders them almost useless from an automation viewpoint. But in
this case, the free variable plays the important role of connecting the induction
hypothesis with the final theorem. Consider how this variable is bound in these
two cases:

– Theorem. Expr: (sum-n n)

(equal (cadr (bsl ’n



282

nil (cons (cons ’n n) env)
c))

n)

– Induction Hypothesis. Expr: (sum-n (− n 1))

(equal (cadr (bsl ’(− n 1)
nil (cons (cons ’n n) env)
c))

(− n 1))

In both cases, the free variable n is bound to the argument of the sum-n expres-
sion, so the hypotheses of the theorem can be easily discharged.

5 Conclusions and Lessons Learned

As it stands, ACL2 can be used to reason about simple functions written in BSL,
but not without significant effort. However, we have become convinced that the
inference rules and strategies required to perform such reasoning can be fully
automated, at least for simple programs, such as the ones beginners are likely
to write in BSL.

In the case of non-recursive functions, a pass that pushes input value types
down through the expressions is sufficient to guarantee that no errors are en-
countered while evaluating the expression, in a manner very similar to (but
theoretically more powerful than) static type checking. Our experience suggests
that this can be accomplished by a higher-level tool that uses ACL2 as a simple
rewriter. The higher-level tool can generate commands to ACL2 using the proof
checker interface.

In the case of recursive functions, we can assume that the evaluator termi-
nates while evaluating the functions. This assumption can be pushed down into
any subexpressions, and it allows us to infer the values returned by the function,
given that it really does terminate. Naturally, this requires induction, using a
scheme suggested by the definition of the recursive function written in BSL. A
careful analysis of the lemmas needed to reason about recursive programs sug-
gests that this, too, can be automated — at least for simple programs in BSL.
The most complicated lemma applies the inductive hypothesis to the evaluation
of a subterm. In the case of the funcion sum-n the induction hypothesis talks
about the behavior of the interpreter on the term (sum-n X ) when X has the
value n − 1. This must be used to reason about the subterm (sum-n (− X 1))
when X has the value n. The necessary “bridging” lemmas can be generated
automatically. In fact, the How to Design Programs philosophy is to develop
programs through the use of templates that can be instantiated. These tem-
plates correspond to general recursion techniques, so an automated system need
only recognize these few templates to suggest the appropriate induction scheme
and necessary bridging lemmas. This approach is much simpler than the one we
used in earlier work [6].



283

Although we have focused our efforts to reason about partial correctness of
recursive functions, a similar approach can also be used to guarantee that the
evaluation of the recursive function does not generate an error. This is very
similar to the guard-checking algorithm in ACL2, which is a generalization of
static type checking.

References

1. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, Orlando,
1979.

2. C. Eastlund, D. Vaillancourt, and M. Felleisen. ACL2 for freshmen: First experi-
ences. In Proceedings of the Seventh International Workshop of the ACL2 Theorem
Prover and its Applications (ACL2-2007), 2007.

3. M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex.
MIT Press, Boston, 2009.

4. M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. How to Design Pro-
grams: An Introduction to Programming and Computing. MIT Press, Boston, 2001.

5. R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, and M. Felleisen. Drscheme:
A pedagogic programming environment for scheme. In International Symposium on
Programming Languages: Implementations, Logics, and Programs, 1997.

6. R. Gamboa and P. Weissbrod. A cost-aware evaluator for ACL2 functions. In
Proceedings of the Fifth International Workshop of the ACL2 Theorem Prover and
its Applications (ACL2-2004), 2004.

7. M. Kaufmann and J S. Moore. An industrial strength theorem prover for a logic
based on Common Lisp. IEEE Transactions on Software Engineering, 23(4):203–
213, April 1997.

8. J. McCarthy. Recursive functions of symbolic expressions and their computation by
machine, part i. Communications of the ACM, 1960.


