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Over the past two decades, Artificial Intelligence (AI) technologies have been successfully applied to a 
wide range of complex problems and have achieved human level, or better, performance at tasks that 
were originally viewed as only within the purview of humans. Despite this progress, AI technologies are 
still prohibitively expensive to build. For example, it took more than a person century of AI expert 
development time to build the IBM Watson system that famously beat two Jeopardy! Champions (Laird 
et al., 2017) and building an AI-powered tutor to provide 1 hr. of classroom instruction can take as much 
as 200-300 hours of development time (Aleven et al., 2009). At their core, all AI systems are powered by 
knowledge (whether hand authored or learned). I would argue that one of the fundamental problems 
in the field is the knowledge transfer problem—mainly, how do we transfer knowledge into AI systems, 
so they can behave intelligently? As AI technologies become more widely used within human society, 
addressing this foundational problem has the potential to have a broad impact across many domains, 
such as education and medicine. 

My research adopts a human-centered approach to the knowledge transfer problem and explores the 
development of teachable AI systems. These interactive learning systems integrate ideas from 
knowledge-based AI, ML, and Human-Computer Interaction (HCI) to enable end users, such as teachers 
or doctors, to build and personalize AI technologies through natural teaching interactions, similar to 
how they would teach another human. My research program blends use-inspired and foundational 
research to advance this concept along three thrusts (see Figure 1). 

 
Figure 1. The three thrusts of my teachable AI research program and how they relate. 

 
Thrust 1: Computational Models of Human Learning and Decision Making 
My first research thrust focuses on building computational models of humans. This thrust aims to 
explore two questions: (1) how can we leverage human data to guide the development of human-like 
computational models? and (2) How can we leverage these human-like models to better understand 
human decision making and learning? 

At the core of this research line is a theory of the computations that any agent (human or otherwise) 
needs to perform in order to learn from worked examples and feedback, which, in the spirit of Marr 
(1983), I refer to as a computational theory of apprentice learning (MacLellan & Koedinger, 2020). This 
theory applies approaches from expert systems, explanation-based learning, inductive logic 
programming, inverse reinforcement learning, and traditional reinforcement learning to support the 
induction and use of mixed symbolic and probabilistic structures. My preliminary theory posits three 
separate mechanisms that agents use to perform apprentice learning: how-learning, where-learning 
and when-learning. According to this theory, when an agent is faced with a problem to solve (e.g., what 
is 2+3?), a match is made between learned skills and the current problem state. If any skills match, the 
agent executes one with positive expected reward. If no skills apply (a typical initial response), then the 
agent requests a demonstration from the human instructor or learning environment (e.g., the instructor 
might enter a 5 in the answer field). The agent then performs how-learning to generate a sequence of 
mental operations (i.e., a procedure) that explains the provided demonstration, for example, the agent 
might explain the demonstration as the addition of the first and second numbers. Next, the agent uses 
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where-learning to induce a schema, or pattern, for extracting information from the environment 
necessary to execute the learned procedure and for recognizing when the procedure should be 
considered; for example, an agent would learn patterns for extracting the first and second numbers 
from the environment when there is an operator sign between them. Finally, the agent uses when-
learning to estimate a reward function for the skill, which enables it to prioritize matching skills and 
determine which should be applied in any given situation; for example, the agent might learn that 
applying the add skill to two numbers produces a positive reward when the operator between them is 
a plus sign. The output of these steps (a procedure, a schema, and a reward function) constitute a new 
skill. On subsequent problems, the agent attempts to apply learned skills that it estimates will produce 
positive reward and receives correctness feedback. This feedback is then used in where- and when-
learning to refine the skill's schema and reward function.  

Based on this theory, I created the Apprentice Learner Architecture (MacLellan et al., 2016a), which 
affords the comparison of alternative computational models of apprentice learning. Within the 
architecture, a model presents as a set of algorithms to perform where-, when-, and how-learning. This 
architecture, and the underlying 
theory, defines a space of models 
that can be searched using 
different model evaluation criteria, 
and my research generates and 
tests models within this space, 
and, where necessary refines the 
theories underlying the models 
(see Figure 2). 

On my DARPA TAILOR project, I showed how these models could be individualized to better predict the 
learning trajectories of individual students and demonstrated how such a model could support 
instructional designers in counterfactually reasoning about how different individuals would respond to 
hypothetical cognitive training interventions (MacLellan, Stowers, and Brady, 2021).  Similar to how 
bridge designers use parametric analysis to computationally simulate and test bridges prior to 
deploying them in the real world, I propose using computational models to simulate and test cognitive 
training interventions prior to running more costly human experiments. Purely statistical models of 
human learning (e.g., MacLellan et al., 2015) are very limited in their ability to generalize to 
interventions without existing human performance data. However, computational models of learning 
mechanistically model how a student’s knowledge changes in response to an intervention and how 
their performance changes as a result. By leveraging cognitive learning theories within a unified 
computational model of learning (Newell, 1994), my work suggests that it is possible to make purely 
theory-driven predictions about human performance for alternative interventions, even when no 
existing human data are available (Maclellan et al., 2016a; Zhang & MacLellan, 2021). 
 
Thrust 2: Human-Like AI/ML Models 
Building on insights from my first research thrust, my second thrust aims to build human-like AI and ML 
models. Humans are incredible learners and problem solvers. While AI systems can exceed human 
performance for specific, narrowly defined tasks, they do not yet possess the kinds of flexible, general-
purpose intelligence that humans are capable of. Even for tasks where computational systems 
outperform humans, learning for humans and ML systems is often qualitatively different (see table 1). 
In his recent book, Becoming Human, Tomasello compared human and ape development to identify 

 
Figure 2. My computational theory refinement approach.  
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what makes us “uniquely human”, and his work demonstrates the importance of considering the social 
nature of learning and knowledge transfer, such as humans’ unique ability to learn from one another 
through situated imitation, explicit instruction, and collaboration. If we do not expand the current 
scope of mainstream ML research to investigate these important characteristics, then I argue that the 
best possible outcome for the field will be ape or animal-like—not human-like—AI/ML systems.  

Table 1. Comparison of some key differences between humans and ML systems. 
Humans ML Systems 
Able to learn completely new tasks with just a few 
examples (tens) 

Require many examples to learn new tasks (tens of thousands) 

Incrementally update their knowledge in light of new 
experiences 

Must retrain on all past experiences, or face catastrophic forgetting 

Can learn from multiple, mixed modalities, such as 
from demonstrations, feedback, verbal instruction 

Typically, only support learning from a single modality 

Can leverage their knowledge to explain their 
reasoning and behavior 

Behavior is often opaque and unexplainable, especially for deep 
learning models 

My research aims to better understand these key capabilities through the construction and evaluation 
of AI systems that emulate them. For example, I aim to develop new AI approaches that can learn 
incrementally from few examples and produce human relatable, explainable, and understandable 
outputs. My work explores the development of distinct AI and ML components (e.g., algorithms for 
incremental concept formation; MacLellan, et al., 2016b) as well as integrated cognitive systems that 
combine multiple components (e.g., my Apprentice Architecture; MacLellan and Koedinger, 2020). In a 
recent study, I compared my Apprentice Learner model to two state-of-the-art Reinforcement Learning 
(RL) models on two math learning tasks (MacLellan and Gupta, 2021). I found that while the RL models 
can learn these tasks, they require thousands to tens of thousands of examples to achieve mastery, 
whereas my Apprentice models only require tens to hundreds of examples. This is possible because 
Apprentice models support multiple modalities of learning; they learn incrementally from both 
demonstrations and feedback, whereas the RL models only learn from feedback. Additionally, they 
decompose the overall learning problem into multiple easier sub-problems (how-, where-, and when-
learning). I currently have a paper under review with the Journal of AI Research that theoretically and 
empirically analyzes how this decomposition produces more efficient learning. 
 
Thrust 3: Teachable Systems 
My final thrust investigates the question, how do we design and build systems that people can teach 
and interact with like they would another human, while still taking advantage of key non-human 
features of AI/ML systems? This work is use-inspired and takes a human-centered approach to building 
teachable systems that address the knowledge transfer problem for real users and applications. For 
example, during my graduate studies at CMU, I explored the development of agents that teachers and 
other domain experts could use to author intelligent tutors via teaching rather than programming 
(MacLellan, et al., 2014; MacLellan et al., 2016a; MacLellan and Koedinger, 2021). While working as an 
industry research scientist, I developed teachable agent technologies for a broader range of military-
related applications. For example, I worked closely with naval planners to create a teachable agent that 
could assist them in constructing operational plans for large numbers of unmanned assets. I also 
worked with expert fighter pilots to transfer their knowledge into an AI model that could fly an F16 
during 1-vs-1 air combat (see DARPA AlphaDogFight competition:  https://www.darpa.mil/news-
events/2020-08-07).  At Drexel, I am actively developing teachable agents to support adult learning 
(under my NSF-funded ALOE project) and to support medics in diagnosing battlefield injuries (under 
my DARPA POCUS project).  
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Human-AI Interaction is uniquely difficult to design for and requires a new set of design facilitators 
(Yang, Steinfeld, Rosé, and Zimmerman, 2020). While working across these different application areas, 
I have been extending foundational HCI theory and methodologies to support the design of interactive 
ML systems that people can naturally teach. A major outcome of these efforts is the development of my 
Natural Training Interactions (NTI) framework (MacLellan et al., 2018), which reviews the teachable 
agent literature and maps out the kinds of knowledge that users might transfer to an agent, as well as 
the patterns, interaction types, and modalities that they can use to transfer this knowledge. I 
hypothesize that similar to human learning (e.g., see the KLI framework; Koedinger, Corbett, and 
Perfetti, 2012), which teaching interactions are most natural and effective for end users will depend on 
the kind of knowledge a user intends to transfer (e.g., concept knowledge transfer will look different 
than skill transfer). To explore this hypothesis, I have developed a new prototyping methodology I refer 
to as dual-sided, limited perception Wizard-of-Oz (WoZ) experiments (Sheline & MacLellan, 2018; 
MacLellan et al., 2019), which adapts the standard WoZ approach to support prototyping of interactive 
learning systems (I use a naïve experimental participant rather than an experimental confederate to 
simulate the teachable system and they have to learn over the course of the experiment). Under my 
recent ARL STRONG project, I have also developed a new experimental platform for efficiently 
conducting online experiments using this paradigm, so I can rapidly prototype alternative teachable 
agent designs and further develop the theory needed to design effective teachable agents. 
 
Future Work 
My research program is a plan that I am actively putting into action. In just a single year at Drexel, I have 
been selected for six external awards totaling over $3.8M in funding. These research projects, which are 
being sponsored by multiple institutions including DARPA, ARL, and NSF, provide resources for me to 
advance all three of my research thrusts. My ARL STRONG project explores the development of task-
general teachable agent capabilities inspired by Tomasello’s work on collaborative learning (Thrust 2) 
and investigates how these capabilities can enable the creation of agents that can more effectively 
team with humans (Thrust 3). My work on the DARPA POCUS project investigates how we can reduce 
the amount of training data needed to build AI models that can diagnose injuries from ultrasound 
imagery (Thrust 2) as well as how teachable AI can be leveraged to effectively transfer knowledge from 
medical experts (Thrust 3). Finally, my NSF ALOE project explores the development of AI technologies 
to support adult learning—both in higher education and in the workforce. This project aims to improve 
our understanding of human learning (Thrust 1) and to develop teachable AI systems that can support 
teachers and students in building and customizing AI technologies (Thrust 3). 

I am particularly excited about the possibility of joining Georgia Tech’s School of Interactive Computing. 
My work spans diverse application areas (education, medicine, military) and disciplinary boundaries 
(AI, ML, HCI, and the Cognitive and Learning Sciences) and would be enhanced by an interdisciplinary 
institution, such as Georgia Tech, where I can find students and collaborators that also have a diverse 
range of backgrounds and skillsets. At Georgia Tech, I am particularly excited about the possibility of 
collaborating with faculty such as Ashok Goel, Mark Riedl, Sauvik Das, Munmun De Choudhury, Betsy 
DiSalvo, and Alex Endert, among many others. Finally, while I have been successful at Drexel University, 
Georgia Tech is a premiere research institution for AI and HCI, which would give me a platform to 
advocate more broadly for the cognitive systems and human-centered AI perspectives. 
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